• Title/Summary/Keyword: Particle Size Analyzer

Search Result 360, Processing Time 0.026 seconds

Recent Development of Differential Mobility Analyzers For Size-Classification of Nanoparticles and Their Applications to Nanotechnologies

  • Seol, Kwang-Soo;Yoshimichi Ohki;Kazuo Takeuchi
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.2
    • /
    • pp.39-44
    • /
    • 2004
  • The present paper gives a review of the recent development of a differential mobility analyzer (DMA) available for both particle size measurements and production of monodisperse particles in the nanometer range. Operating principles of a general DMA are introduced as well as characteristics of highly functional DMAs such as those capable of classifying particles in a measurement range as broad as 1-1000nm at low pressures. Some examples of DMA applications are also described.

A Study on the Particle Behavior in Turbulent Pulverized Coal Flame (난류 미분탄화염 내 입자거동에 관한 연구)

  • Hwang, Seung-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1111-1118
    • /
    • 2010
  • Combustion measurements based on optical techniques have recently become of major interest as tools not only for clarifying the combustion mechanism but also for validating the computational results for the combustion fields. In this study, the particle behavior in turbulent pulverized coal flame are investigated using advanced optical diagnostics. A laboratory-scale pulverized coal combustion burner is specially fabricated as open type in order to apply various optical measurement techniques. The detailed particle behavior is performed by LDV (laser Doppler velocimetry) and SDPA (shadow Doppler particle analyzer). It is observed that the particle mean diameter increase as the distance from burner increases, and this is found to be caused by the decrease of small particles' diameter and increase of large particles' diameter. This is because of result in the char reaction and the particle swelling due to devolatilization, respectively. The size-classified streamwise velocities of pulverized coal particles in the central region of the jet show the same magnitude, whereas those in the outer region are different depending on the particle size. The results show that the velocity and size-classified diameter of the pulverized coal particles in the flame can be measured well by SDPA.

h Study on the Preparation of PMMA/PSt Composite Particles by Sequential Emulsion Polymerization (단계중합법에 의한 PMMA/PSt Composite Particle의 제조에 관한 연구)

  • 이선룡;설수덕
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.617-624
    • /
    • 2001
  • The core-shell composite latexes were synthesized by stage emulsion polymerization of methyl methacrylate (MMA) and styrene (St) with ammonium persulfate after preparing monomer pre-emulsion in the presence of anionic surfactant. However, in preparation of core-shell composite latex, several unexpected results are observed, such as, particle coagulation, low degree of polymerization, and formation of new particles during shell polymerization. To solve the disadvantages, We study the effect of initiator concentrations, surfactant concentrations, and reaction temperature on the core-shell structure of polymethyl methacrylate/polystyrene and polystyrene/polymethyl methacrylate. Particle size and particle size distribution were measured using particle size analyzer, and the morphology of the core-shell composite latex was determined using transmission electron microscope. Glass temperature was also measured using differential scanning calorimeter. To identify the core-shell structure, pH of the two composite latex solutions were measured.

  • PDF

Development and Evaluation of Hy-SMPS (Hy-SMPS의 개발 및 성능평가)

  • Lee, Hong-Ku;Eun, Hee-Ram;Lee, Gun-Ho;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.11 no.2
    • /
    • pp.57-61
    • /
    • 2015
  • Atmospheric nano-particles along the altitude is one of the main factors causing severe weather phenomena. It is a challenge to find the precise particle size distribution. One useful instrument includes a scanning mobility particle sizer (SMPS). This measures the size distribution of submicron aerosols. The SMPS consists of a condensation particle counter (CPC), differential mobility analyzer (DMA), high voltage power supplier (HVPS), and neutralizer. Due to the many components, it is difficult to install a commercial SMPS into a tethered balloon package system (Eun, 2011). In this study, we customized a SMPS for the tethered balloon package system called Hy-SMPS. It is portable, compact in structure, and evaluated by TSI SMPS using mono and poly-dispersed particles.

SPRAY STRUCTURE OF HIGH PRESSURE GASOLINE INJECTOR IN A GASOLINE DIRECT INJECTION ENGINE

  • Lee, Chang Sik;Chon, Mun Soo;Park, Young Cheol
    • International Journal of Automotive Technology
    • /
    • v.2 no.4
    • /
    • pp.165-170
    • /
    • 2001
  • This study is focussed on the investigation of spray characteristics from the high pressure gasoline injector for the application of gasoline direct injection engine. For the analysis of spray structure of high pressure gasoline injector; the laser scattering method with a Nd-Yag laser and the Phase Doppler particle analyzer system were applied to observe the spray development and the measurement of the droplet size and velocity of the spray, respectively. Also spatial velocity distribution of the spray droplet was measured by use of the particle image velocity system. Experimental results show that high pressure gasoline injector shapes the hollow-cone spray, and produce the upward ring shaped vortex on the spray surface region. This upward ring shaped vortex promotes the secondary atomization of fuel droplets and contributes to a uniform distribution of fuel droplets. Most of fuel droplets are distributed under 31$\mu m$ of the mean droplet size (SMD) and the frequency distribution of the droplet size under 25$\mu m$ is over 95% at 7 MPa of injection pressure. According to the experimental results of PIV system, the flow patterns of the droplets velocity distribution in spray region are in good agreement with the spray macroscopic behaviors obtained from the visualization investigation.

  • PDF

The Atomization Performance of Ceramic Nozzles in Air Carrier Sprayer (공기운반분무기용 세라믹 노즐의 미립화 성능)

  • 박석호;노수영
    • Journal of Biosystems Engineering
    • /
    • v.20 no.3
    • /
    • pp.236-244
    • /
    • 1995
  • Droplet size is one of the important factors in the deposition and drift of agrichemical application. In this study, droplet size and its distribution of the three different sizes of ceramic hollow cone nozzles being used in the air carrier sprayer for apple production were investigated at the various nozzle pressures and the three air velocities. The Malvern particle size analyzer were used for the measurement of droplet size and its distribution. The important results emerged from th is study can be summarized as follows. 1. Discharged rate was increase with the increase of the nozzle diameter and pressure, amount of the difference was remarkable between the nozzle diameter of 1.0, 1.2 and 1.5 mm, but no difference were found between the diameter of 1.0 and 1.2 mm in the same nozzle pressure. 2. Mass median diameter were varied as 40~160 ${mu}m$ at the air velocity of 0 m/s, 70~140 ${mu}m$ of 15 m/s and 100~160 ${mu}m$ of 20 m/s 3. It appeared that the air velocity range of 15~20 m/s was desirable for both drift and deposition control in the given experimental conditions.

  • PDF

The Preparation of Polyurethane Microcapsule and Its Breaking Behavior (폴리우레탄계 마이크로캡슐의 제조 및 그의 파괴 거동)

  • 박형인;김애경;이웅의;최창남
    • Textile Coloration and Finishing
    • /
    • v.10 no.2
    • /
    • pp.37-44
    • /
    • 1998
  • In this study, the polyurethane microcapsules containing disperse dye were prepared by in-situ polymerization method using hexamethylene diisocyanate (HDI, aliphatic type) and m-xylene diisocyanate(XDI, aromatic type) with ethylene glycol (EG) And the size, shape, particle size distribution, and breaking behavior of microcapsules prepared were investigated. The size and shape of microcapsule were observed by scanning electron microscope (SEM) . The particle size distribution was analyzed by image analyzer. The breaking behavior of microcapsule was checked by measuring the optical density of solution that the disperse dye was dissolved after the microcapsule was broken by constant pressure. The particle size was inversely proportional to the stirring speed, and the size of microcapsule prepared from HDI and EG was smaller than that of microcapsule prepared from XDI and EG. Aliphatic type microcapsule was broken easily, compared with aromatic type one. It was considered due to the difference of reactivity between HDI and XDI. And the microcapsule prepared by stirring strongly was broken easily.

  • PDF

Application of Scaling Theories to Estimate Particle Aggregation in a Colloidal Suspension

  • Park, Soongwan;Koo, Sangkyun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.260-266
    • /
    • 2022
  • Average aggregate size in particulate suspensions is estimated with scaling theories based on fractal concept and elasticity of colloidal gel. The scaling theories are used to determine structure parameters of the aggregates, i.e., fractal dimension and power-law exponent for aggregate size reduction with shear stress using scaling behavior of elastic modulus and shear yield stress as a function of particle concentration. The structure parameters are utilized to predict aggregate size which varies with shear stress through rheological modeling. Experimentally rheological measurement is conducted for aqueous suspension of zinc oxide particles with average diameter of 110 nm. The predicted aggregate size is about 1135 nm at 1 s-1 and 739 nm at 1000 s-1 on the average over the particle concentrations. It has been found that the predicted aggregate size near 0.1 s-1 agrees with that the measured one by a dynamic light scattering analyzer operated un-sheared.

An Experimental Study on Spray Characteristics of Crude Palm Oil (비 정제 팜유에 대한 분무특성의 실험적 연구)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Journal of Biosystems Engineering
    • /
    • v.35 no.3
    • /
    • pp.158-162
    • /
    • 2010
  • The effect of fuel injection characteristics on engine performance has been known for improving fuel economy and emission reduction. In this study, the spray characteristics of crude palm oil blended fuel with conventional diesel fuel was investigated. The experiments were performed to evaluate the effect of crude palm oil blending ratio and injection pressure on the spray behavior. The droplet size of injected fuel was analyzed through laser diffraction particle analyzer (LDPA). Also, spray atomization characteristics were investigated in terms of Sauter mean diameter (SMD) and droplet distribution at various injection conditions. Fuel containing crude palm oil has different spray pattern on account of the high viscosity. Through those experimental results, we found that the increase of blending ratio made droplet size larger, SMD of biodiesel 100% was increased 30.2% than that of diesel fuel 100% under injection pressure of 60 MPa.

Comparative Analysis of Quality Properties by the Particle Size of Rice Flours according to Cultivars (품종별 쌀가루의 입자크기에 따른 품질특성 비교)

  • Shin, Dong-Sun;Lee, Eun-Chang;Choi, Ji-Youn;Oh, Sea-Kwan;Park, Hye-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.4
    • /
    • pp.635-643
    • /
    • 2017
  • The properties of rice were studied, and 8 rice flour cultivars were used to study the effect of particle size on the physicochemical properties, color value, RVA viscosities, water absorption index (WAI), and water solubility index (WSI) of rice flours. The mean particle size by the 3 particle size classification of 150 mesh, 200 mesh, and 250 mesh was, $90.75{\mu}m$, $60.73{\mu}m$, $39.94{\mu}m$, respectively. Thai rice had the highest amylose content and Samkwang rice had the lowest amylose content. Protein content of rice flours prepared was decreased as the particle size of rice flour decreased. In terms of color values, the L-value and the a-value of rice flour were increased as the particle size of rice flours decreased, while the b-value was decreased as the particle size of rice flours decreased. Using a rapid visco analyzer (RVA), the initial pasting temperature of Thai rice cultivar was found to be the highest; the peak viscosities of Sunpum cultivar and Misomi cultivar, and Samkwang rice were higher than those of other rice flours. The water absorption index and water solubility index were increased as the particle size of rice flour decreased. In order to use processed rice flour for the development of processed foods, proper characteristics of the cultivars and particle size should be considered.