• Title/Summary/Keyword: Particle Sedimentation

Search Result 175, Processing Time 0.024 seconds

Effect of Suspension in AC Electrowetting (교류 전기습윤에서 부유물의 영향)

  • Ko, Sung-Hee;Oh, Jung-Min;Kang, Hwan-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.379-382
    • /
    • 2006
  • We are investigating the effect of particle on electrowetting, and this paper reports the experimental results obtained until now. The experiment was performed for different particle sizes, electrolyte concentration, and AC frequencies. The problem is quite complicated by various factors, such as the existence of surfactant in suspension and sedimentation of particles. We could not draw a concrete conclusion on the effect of particles, and it needs further investigations. We also report interesting phenomena observed during the experiment. It includes the droplet generation at the edge of a droplet, pseudo-bistability of electrowetting, flow generation inside a droplet, and the chain formation of particles inside a droplet.

  • PDF

Hydrodynamic Explanation of the Mechanism of Interface Formation for Concentrated Suspensions (고농도 부유물의 침전시 계면현상 기구에 대한 수리통역학적 해석)

  • 한무영
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.10a
    • /
    • pp.65-68
    • /
    • 1992
  • In characterizing a suspension, heterogenety is included onto the previous characterization using solids concentrations and flocculent characteristics, because of its importance in hydrodynamics. The mechanism of interface formation during the sedimentation of concentrated suspension (thickening) is investigated from a microcosm consisting of four particles in a same plane and a smaller particle below. The critical distances after shich interface forms are calculated as a function of particle size ratio when the small particle is located in the middle of the squre datermined by the large particles. The results shows that the critical separation distance increase as the size ratio approaches to one (homogeneous suspension). This conforms to the trend of existing observations that homogeneous suspensions create the solid-liquid interface at much lower concentration (at al larger separation distance) that the heterogeneous suspensions.

  • PDF

The Effects of Extrusion Cooking and Milling on the Instant Properties of Wheat Powders

  • Tanhehco, E.J.;Ng, P.K.W.
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.758-765
    • /
    • 2005
  • Instant powders that only require mixing with water prior to consumption can be produced by extrusion for use in products such as instant beverages. Both extrusion processing conditions and particle size of powder are important to end-product characteristics. In this study, a twin-screw extruder was used under various processing conditions (feed moisture, barrel temperature, and screw speed) to produce extrudates from soft wheat flour, which were ground to powders with particle size ranges of less than 93, 93-145, and $145-249\;{\mu}m$. Effects of adding soy lecithin to wheat flour before extrusion were also investigated. Water absorption, solubility, suspension viscosity, and dispersibility of wheat powders were related to specific. mechanical energy measured during extrusion. Powder particle size was important to instant properties, especially ease of dispersal in water and stability to sedimentation. Addition of lecithin significantly improved dispersibility of powders.

Prediction of Fate of Resuspended Sediment in the Development of Deep-sea Mineral Resources (심해저 자원 개발과정에서 재부유 퇴적물 입자의 동태 예측에 관한 연구)

  • Lee, Du-Gon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.45-50
    • /
    • 2002
  • This study presents a modeling method to predict fate of resuspended sediment in the development of deep-sea mineral resources. Resuspended deep-sea sediment during the development is considered a major environmental problem. In order to quantitatively analyze the resuspended sediment in the water column, particle size distribution (PSD) is considered an important factor. The model developed here includes PSD and coagulation process, as well as sedimentation process. Using the model, basic simulation was performed under representative environmental setting. The simulation showed the dynamics of change of particle size distribution for 50 m depth of water column up to 10 days of simulation time. Coagulation seemed an important factor in the fate of resuspended deep-sea sediment.

  • PDF

Comparative Analyses of Commercial Detonation Nanodiamonds

  • Puzyr, A.P.;Burova, A.E.;Bondar, V.S.;Rhee, C.K.;Rhee, W.H.;Hwang, K.C.
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.297-302
    • /
    • 2011
  • Colloidal stability is one of crucial factors for many applications of nanodiamond. Despite recent development, nanodiamonds available on the market often exhibit a high impurity content, wide size distribution of aggregates and low resistance to sedimentation. In the current study, four commercial nanodiamond powders synthesized by detonation synthesis were surface modified and then separated with respect to the size into six fractions by centrifugation. The fractions were evaluated by zeta potential, particle size distribution and elemental composition. The results showed that the modified nanodiamonds form stable colloidal suspensions without sedimentation for a long time.

Separation and Characterization of Dust and Ground Water Particulates Using Gravitational SPLITT Fractionation.

  • Lee, Seung Ho;Park, Hui Yeong;Lee, Sang Geun;Yong, Seong Gwon;Eum, Cheol Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.6
    • /
    • pp.616-622
    • /
    • 2001
  • Split-flow thin (SPLITT) cell Fractionation(SF) is a technique that allows separation of particulates and macromolecules into two fractions. A gravitational SF(GSF) system is constructed and tested for its applicability for separation of dust and ground water particulates. When tested with polystyrene latex particles, experimental data were in good agreements with theory. The 9.8 and 21.4㎛ polystyrene particles were successuflly separated in a continuous mode, where the mixture is continuously fed into the GSF channel allowing separation in a large sacle. The GSF system is successfully applied to continuous separation of dust and ground water particels based on the sedimentation coefficient, which is closely related to the particle size. The separations were confirmed by microscopy and energy-dispersive X-ray (EDX) analysos.

Preparation and Evaluation of Ketoprofen-incorporated Solid Lipid Nanoparticles (SLN) (케토프로펜을 함유하는 고형 지질 나노파티클의 제조 및 평가)

  • Baek, Myoung-Ki;Lee, Sang-Young;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.4
    • /
    • pp.245-256
    • /
    • 1996
  • Solid lipid nanoparticles (SLN) have been developed as a new drug delivery system. Although many particulate drug carriers, such as microsphere, liposome, niosome, emulsion, etc. have been introduced, they have some disadvantage; low efficiency of incorporation and stability, lack of reproducibility, and so on. Meanwhile, SLN as a new drug delivery system is known to entrap rugs with a high efficiency and a good reproducibility. Moreover, small size SLN can circulate in blood for a prolonged time. Although many preparation methods were introduced, microfluidization method is recommended to be the most useful. This study was attempted to prepare and evaluate ketoprofen-incorporated SLNs (keto-SLN), which were prepared by two methods, ultrasonication and microfluidization. Keto-SLN was evaluated by measurement of particle size and zeta potential, efficacy of entrapment, sedimentation volume, in virto release pattern. The mean particle size was about $0.1\;{\mu}m$, and the size was dependent on the type and the amount of emulsifier. Zeta potential was negative, $-9{\sim}-13mV$ and entrapment efficacy was very high and stability was good for at least 60 days in the respect of particle size and sedimentation volume ratio. Analgesic effect was also determined as well as pharmacokinetic parameters. The former was comparable to that of that of ketoprofen loaded suspension (keto-sus) and the latter revealed that consistent with the delayed release of keto-SLN. $T_{max}$ was longer than keto-sus. Therefore, keto-SLN was favourable dosage forms in the field of drug delivery system such as anti-cancer, analgesics and anti-inflammatory agents.

  • PDF

Study on the Asymmetric Regional Deposition of Airborne Pollutant Particles in the Human Respiratory Tract (대기오염 입자의 인체 호흡기내 비대칭 국부침전 특성에 관한 연구)

  • 구재학;김종숭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.551-560
    • /
    • 2003
  • Particle deposition in human lungs was investigated theoretically by using asymmetric five-lobe lung model. The volumes of each of the five lobes were different, thereby forming an asymmetric lung structure. The tidal volume and flow rate of each lobe were scaled according to lobar volume. The total and regional deposition with various breathing patterns were calculated by means of tracking volume segments and accounting for particle loss during inhalation and exhalation. The deposition fractions were obtained for each airway generation and lung lobe, and dominant deposition mechanisms were investigated for different size particles. Results show that the tidal volume and flow rate have a characteristic influence on particle deposition. The total deposition fraction increases with an increase in tidal volume for all particle sizes. However, flow rate has dichotomous effects: a higher flow rate results in a sharp increase in deposition for large size particles, but decreases deposition for small size particles. Deposition distribution within the lung shifts proximally with higher flow rate whereas deposition peak shifts to the deeper lung region with larger tidal volume. Deposition fraction in each lobe was proportional to its volume. Among the three main deposition mechanisms, diffusion was dominant for particles < 0.5 ${\mu}{\textrm}{m}$ whereas sedimentation and impaction were most influential for larger size particles. Impaction was particularly dominant for particles> 8 ${\mu}{\textrm}{m}$. The results may prove to be useful for estimating deposition dose of inhaled pollutant particles at various breathing conditions.

Optimal Synthesis Conditions of Calcium Hydrogen Phosphate (인산 일수소칼슘의 최적합성조건)

  • Shin, Wha-Woo;Kim, Youn-Seol;Kim, Jun-Hea
    • YAKHAK HOEJI
    • /
    • v.42 no.2
    • /
    • pp.153-158
    • /
    • 1998
  • Calcium hydrogen phosphate was synthesized by reacting calcium chloride and sodium hydrogen phosphate solution in this study. It is well known that the particle size and yield o f calcium hydrogen phosphate produced is greatly affected by the synthetic conditions such as the reactant concentration, reaction temperature, reacting fine, mole ratio and drying temperature, etc. The purpose of this study is to investigate the optimum synthesis condition from the viewpoint of yield and sedimentation volume of the prepared calcium hydrogen phosphate powder according to a randomized complete block design proposed by G.E.P. Box and K.B. Wilson. It was found that the optimum synthetic conditions of calcium hydrogen phosphate were as follows: It was found that optirnum temperature range of reactant solutions was $28-38^{\circ}C$ and $32-42^{\circ}C$ respectively, on the viewpoint of yield and sedimentation volume. The optimum concentration range of reactant solutions was 5.5-10.0% and 6.9-7.4% respectively, on the viewpoint of yield and sedimentation volume. The optimum mole ratio of $CaCl_2$ to $Na_2HPO_4$ was in the range of 1.2-2.0 and the optimum reacting time range was 8.5-11.0 minutes. The optimum drying temperature range was $39-41^{\circ}C$ from the viewpoint of yield, but it was $39-43^{\circ}C$ on the basis of sedimentation volume. Crystallographic analysis to X-ray diffraction patterns of commercially available ecalcium hydrogen phosphate and calcium hydrogen phosphate samples prepared in this study suggested that all samples tested belonged to monoclinic crystal system characteristic of $CaHP0_4{\cdot}2H_20$ crystals.

  • PDF

Characterization of Asian dust using steric mode of sedimentation field-flow fractionation (Sd/StFFF) (Steric 모드의 침강장-흐름 분획법을 이용한 황사의 특성분석)

  • Eum, Chul Hun;Kim, Bon Kyung;Kang, Dong Young;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.476-482
    • /
    • 2012
  • Asian dust particles are known to have sizes ranging from a few nanometers up to about a few micrometers. The environmental and health effects depend on the size of the dust particles. The smaller, the farther they are transported, and the deeper they penetrate into the human respiratory system. Sedimentation field-flow fractionation (SdFFF) provides separation of nano to microparticles using a combination of centrifugal force and parabolic laminar flow in a channel. In this study, the steric mode of SdFFF (Sd/StFFF) was tested for size-based separation and characterization of Asian dust particles. Various SdFFF experimental parameters including flow rate, stop-flow time and field strength of the centrifugal field were optimized for the size analysis of Asian dust. The Sd/StFFF calibration curve showed a good linearity with $R^2$ value of 0.9983, and results showed an excellent capability of Sd/StFFF for a size-based separation of micron-sized particles.The optical microscopy (OM) was also used to study the size and the shape of the dust particles. The size distributions of the samples collected during a thick dust period were shifted towards larger sizes than those of the samples collected during thin dust periods. It was also observed that size distribution of the sample collected during dry period shifts further towards larger sizes than that of the samples collected during raining period, suggesting the sizes of the dust particle decrease during raining periods as the components adsorbed on the surface of the dust particles were removed by the rain water. Results show Sd/StFFFis a useful tool for size characterization of environmental particles such as the Asian dust.