• Title/Summary/Keyword: Particle Removal

Search Result 749, Processing Time 0.03 seconds

Preparation and Crystallization Behavior of Luster Glaze Containing CeO2 (CeO2 함유 러스터 유약 제조 및 결정화 특성)

  • 김성균;이성민;유중환;김형태
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1224-1228
    • /
    • 2003
  • The crystallization behavior of a luster glaze containing ceria has been investigated. When glazed specimens were sintered at 110$0^{\circ}C$, crystalline ceria particles were preferentially precipitated with (100) planes parallel to the specimen surface with the size of around 200 nm. The particle population in the surface region was much higher than inside glaze, covering over 60% of the specimen surface area. Crystallization of the particles with preferred orientation was promoted, after the removal of internal interface through complete melting of the fit particles. The luster effect seems to result from CeO$_2$ particles of high refractive index, their strong light scattering at visible rage due to fine crystalline size 200 nm and their planar arrangement in the surface region.

Development and Evaluation of Impregnated Carbon Systems Against Iodine Vapours

  • Srivastava, Avanish Kumar;Saxena, Amit;Singh, Beer;Srivas, Suresh Kumar
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.274-279
    • /
    • 2007
  • In order to understand the breakthrough behaviour of iodine vapours on impregnated carbon systems, an active carbon, 80 CTC grade, $12{\times}30$ BSS particle size and $1104\;m^2/g$ surface area, was impregnated with metal salts such Cu, Cr, Ag, Mo and Zn, and an organic compound Triethylene diamine (TEDA) to prepare different carbon systems such as whetlerite, whetlerite/TEDA, whetlerite/KI/KOH and ASZMT. The prepared adsorbents along with active carbon were characterized for surface area and pore volume by $N_2$ adsorption at liquid nitrogen temperature. These carbon systems were compared for their CT (concentration X time) values at 12.73 to 53.05 cm/sec space velocities and 2 to 5 cm carbon column bed heights. The carbon column of 5.0 cm bed height and 1.0 cm diameter was found to be providing protection against iodine vapours up to 5.5 h at 3.712 mg/L iodine vapour concentration and 12.73 cm/sec space velocity. The study clearly indicated the adsorption capacities of carbon systems to be directly proportional to their surface area values. Dead layer with all the prepared carbon systems was found to be less than 2.0 cm indicating it to be minimum bed height to have protection against $I_2$ vapours. Effect of carbon bed height and flow rate was also studied. The active carbon showed maximum protection at all bed heights and flow rates in comparison to all other impregnated carbon systems, showing that only physical adsorption is responsible for the removal of iodine vapours.

The effect of organic matter on the removal of phosphorus through precipitation as struvite and calcium phosphate in synthetic dairy wastewater

  • Aleta, Prince;Parikh, Sanjai J.;Silchuk, Amy P.;Scow, Kate M.;Park, Minseung;Kim, Sungpyo
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.163-172
    • /
    • 2018
  • This study investigated the effect of organic matter on the precipitation of struvite and calcium phosphate for phosphorus recovery from synthetic dairy wastewater. Batch precipitation experiments were performed to precipitate phosphorus from solutions containing $PO_4{^{3-}}$ and $NH_4{^+}$ by the addition of $Mg^{2+}$ and $Ca^{2+}$, separately, at varying pH, Mg/P and Ca/P molar ratios, and organic matter concentrations. Soluble total organic solids exhibited more inhibition to precipitation due to potential interaction with other dissolved ionic species involved in phosphorus precipitation. Xylan with low total acidity only exhibited significant inhibition at very high concentrations in synthetic wastewater (at up to 100 g/L). No significant inhibition was observed for Mg and Ca precipitation at relatively lower concentrations (at up to 1.2 g/L). MINTEQ simulations show that dissolved organic matter (DOM) as humic substances (HS) can cause significant inhibition even at relatively low concentrations of 0.165 g/L fulvic acid. However, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis suggested that xylan altered the crystal structure of both precipitates and had caused the formation of smaller sized struvite crystals with slightly rougher surfaces This could be due to xylan molecules adhering on the surface of the crystal potentially blocking active sites and limit further crystal growth. Smaller particle sizes will have negative practical impact because of poorer settleability.

Growth mechanism of InP and InP/ZnS synthesis using colloidal synthesis (반응 용기법을 이용한 InP/ZnS 양자점 합성과정에서 InP 코어의 성장기구)

  • Seo, Han wook;Jeong, Da-woon;Lee, Bin;Hyun, Seoung kyun;Kim, Bum Sung
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.6-10
    • /
    • 2017
  • This study investigates the main growth mechanism of InP during InP/ZnS reaction of quantum dots (QDs). The size of the InP core, considering a synthesis time of 1-30 min, increased from the initial 2.56 nm to 3.97 nm. As a result of applying the proposed particle growth model, the migration mechanism, with time index 7, was found to be the main reaction. In addition, after the removal of unreacted In and P precursors from bath, further InP growth (of up to 4.19 nm (5%)), was observed when ZnS was added. The full width at half maximum (FWHM) of the synthesized InP/ZnS quantum dots was found to be relatively uniform, measuring about 59 nm. However, kinetic growth mechanism provides limited information for InP / ZnS core shell QDs, because the surface state of InP changes with reaction time. Further study is necessary, in order to clearly determine the kinetic growth mechanism of InP / ZnS core shell QDs.

Characterization of Bottom Ash as an Adsorbent of Lead from Aqueous Solutions

  • Gorme, Joan B.;Maniquiz, Marla C.;Kim, Soon-Seok;Son, Young-Gyu;Kim, Yun-Tae;Kim, Lee-Hyung
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.207-213
    • /
    • 2010
  • This study investigated the potential of using bottom ash to be used as an adsorbent for the removal of lead (Pb) from aqueous solutions. The physical and chemical characteristics of bottom ash were determined, with a series of leaching and adsorption experiments performed to evaluate the suitability of bottom ash as an adsorbent material. Trace elements were present, such as silicon and aluminum, indicating that the material had a good adsorption capacity. All heavy metals leached during the Korea standard leaching test (KSLT) passed the regulatory limits for safe disposal, while batch adsorption experiments showed that bottom ash was capable of adsorbing Pb (experimental $q_e$ = 0.05 mg/g), wherein the adsorption rate increased with decreasing particle size. The adsorption data were then fitted to kinetic models, including Lagergren first-order and Pseudo-second order, as well as the Elovich equation, and isotherm models, including the Langmuir, Freundlich and Dubinin-Radushkevich isotherms. The results showed that pseudo-second order kinetics was the most suitable model for describing the kinetic adsorption, while the Freundlich isotherm best represented the equilibrium sorption onto bottom ash. The maximum sorption capacity and energy of adsorption of bottom ash were 0.315 mg/g and 7.01 KJ/mol, respectively.

Characterization of Fe-ACF/TiO2 composite and photocatalytic activity for MB Solution under visible light (Fe-ACF/TiO2 복합체의 특성화와 가시광선조건에서 MB 용액의 광촉매활성)

  • Zhang, Kan;Meng, Ze-Da;Oh, Won-Chun
    • Analytical Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.225-232
    • /
    • 2010
  • In present study, a conventional sol-gel method was used to prepare Fe-ACF/$TiO_2$ composites, a kind of composite photocatalysts, whose capability was evaluated by degrading methylene blue (MB) solution. The particle size, surface structure, crystal phase and elemental identification of the composites prepared were characterized by BET, SEM, XRD and EDX, respectively. The spectra of MB concentration degraded under visible light were obtained by UV/Vis spectrophotometer. These obtained spectra demonstrated the photocaltalytic activity from removal concentrations of MB. It was considered that these photonic activities are induced by a strong synergetic reaction among ACF, $TiO_2$ and Fe in the composite photocatalysts under visible light.

Influence of the Surface Energetics on flotation Process - Importance of the Surface Energy and Polarity of Solid Particles in Flotation Efficiency - (부유부상 공정에 있어서 표면 에너지의 역할 - 부유부상 효율에 있어 고형 입자의 표면 에너지 및 극성성분의 중요성 -)

  • Lee, Hak-Rae;Park, Il;Lee, Yong-Min;Lee, Jin-Hee;Cho, Joong-Yeon;Han, Sin-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • The object of this study was to determine the surface energy of hydrophobically modified micro-crystalline cellulose (MCC) with AKD and evaluate the effect of surface energy of the solid particles dispersed in aqueous medium on flotation efficiency. Especially to eliminate the complication derives from the diverse parameters of solid particles including particle size, type, etc. MCC's modified with AKD have been used. The surface energy Parameters were calculated from advancing contact angles of apolar and polar liquids on MCC pellets using the Lifshitz-van der Waals acid-base (LW:AB) approach. Total surface energy of hydrophobic MCC ranged from 46.19 mN/m to 48.60 mN/m. The contribution of the acid-base components to the total surface energy ranged form 13% to 17% for hydrophobic MCC's. The effect of surface characteristics on the flotation efficiency was evaluated. It was shown that there exist critical values of surface energies to increase flotation efficiency. Total surface energy and polar component of solid particles should be lower than 47 mN/m and 7 mN/m, respectively, for effective removal in the flotation process.

UV 나노임프린트 리소그래피의 Quartz 기판상의 Resin mold 제거를 위한 Hybrid 세정공정에 관한 연구

  • Jo, Yun-Sik;Kim, Min-Su;Gang, Bong-Gyun;Kim, Jae-Gwan;Lee, Byeong-Gyu;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.81.1-81.1
    • /
    • 2012
  • 나노임프린트 리소그라피(Nano-Imprint Lithography, NIL) 기술은 기판위의 resin을 나노구조물이 각인된 스탬프로 눌러서 나노구조물을 형성하는 기술로, 경제적이고 효과적으로 나노구조물을 제작할 수 있는 기술이다. 그중에서도 UV 기반의 나노임프린트(UV-NIL) 기술은 resin을 투명한 스탬프로 누른뒤 UV로 경화시켜 나노구조물을 형성하는 기술로써 고온, 고압($140{\sim}180^{\circ}C$, 10~30bar)이 필요한 가열식 나노임프린트 기술에 비해 상온, 상압($20^{\circ}C$, 1bar)에서도 구조물 형성이 가능하여 다층구조 형성에 적합하다. 연속적인 임프린팅 공정에 의해 resin이 quarz 스탬프에 잔류하여 패터닝에 결함을 유발하게 되므로 오염물을 제거하기 위한 세정공정이 필요하다. 하지만 UV에 의해 경화된 resin은 cross-linking을 형성하여 화학적인 내성이 증가하게 되므로 제거하기가 어렵다. 현재는 resin 제거를 위한 세정공정으로 SPM($H_2SO_4/H_2O_2$) 세정이 사용되고 있는데 세정시간이 길고 세정 후에 입자 또는 황 잔유물이 남으며 많은 유해용액 사용의 문제점이 있어 효과적으로 resin을 제거할 세정공정이 필요한 상황이다. 본 연구에서는 친환경적인 UV 세정 및 오존수 세정공정을 적용하여 경화된 resin을 제거하는 연구를 진행하였다. 실험샘플은 약 100nm 두께의 resin을 증착한 $1.5cm{\times}1.5cm$ $SiO_2$ 쿠폰 wafer를 사용하였으며, UV 및 오존수의 처리시간을 달리하여 resin 제거효율을 평가하였다. ATR-FTIR 장비를 사용하여 시간에 따른 resin의 두께를 측정한 결과, UV 세정으로 100nm 높이의 resin중에 80nm의 bulk resin이 단시간에 제거가 되었고 나머지 20nm의 resin thin film은 오존수 세정으로 쉽게 제거되는 것을 확인 하였다. 또한 표면에 남은 resin residue와 particle을 제거하기 위해서 SC-1 세정을 진행하였고 contact angle과 optical microscope 장비를 사용하여 resin이 모두 제거된 것을 확인하였다.

  • PDF

Antioxidantive Effectiveness of Trichosanthes kirilowii Maximowicz Extracts (하늘타리(Trichosantes kirilowii Maximowicz)추출물의 항산화 효과)

  • Zhoh, Choon Koo;Uhm, Tae Yong;Kim, Joo Chan
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.625-629
    • /
    • 2007
  • Recently, there is a growing interest about unsaturated lecithin having excellent characteristics of skin affinity and absorbency. Accordingly, this study intended to develop a natural sulfuration material in order to enhance the stability of oxidation of unsaturated lecithin and substitute existing sulfuration materials which indicate variability and toxicity. As sulfuration components, plenol acid family, 3,5-dihydroxybenzoic acid, and flavanone were analyzed. Total polyphenol content was higher in the root extracts (133.85 mg/g) than in the fruit extracts (53.5 mg/g). Above 100 ppm polyphenol content, the free radical removal efficiency and lipid oxidation prevention of the root extracts were 20.1 and 19.2% superior compared with BHT respectively. Also, the extracts indicated high survival rate of more than 95% below 1250 ppm, showing the stability. For the stability of liposome made from an unsaturated lecithin, the root extracts were superior to the fruit extracts. Especially, 15.1 and 13.9% of sulfuration effect and zeta potential were improved with 9.3% reduced particle size compared with BHT as the control group, respectively.

Synthesis and Photodecomposition of N-Doped $TiO_2$ Surface Treated by Ammonia (암모니아 표면처리 된 질소 도핑 $TiO_2$ 광촉매의 합성 및 광분해반응)

  • Kim, Yesol;Bai, Byong Chol;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.308-312
    • /
    • 2012
  • Nitrogen doped $TiO_2$ photocatalysts were prepared by ammonia for exploring the visible light photocatalytic activity. To explore the visible light photocatalytic activity of the nitrogen doped $TiO_2$ photocatalyst, the removal of methylene blue dye was investigated under the sunlight. SEM images showed that the flocculated particle sizes of N-doped $TiO_2$ decreased due to the reaction with ammonia. XRD patterns demonstrated that the samples calcined at temperatures up to $600^{\circ}C$ and doped with nitrogen using ammonia clearly showed rutile as well as anatase peaks. The XPS results showed that the nitrogen composition onto $TiO_2$ increased according to the reaction time with ammonia. Photocatalytic activity of the nitrogen doped $TiO_2$ was better than that of undoped $TiO_2$. Nitrogen doping onto the $TiO_2$ also affected the crystal type of $TiO_2$ photocatalyst.