• Title/Summary/Keyword: Particle Mixing Rate

Search Result 129, Processing Time 0.023 seconds

Development and performance evaluation of a test particle generator for a field inspection equipment of PM-2.5 sensors (미세먼지 간이측정기 현장 검사용 시험 입자 발생기 개발 및 성능 평가)

  • Chung, Hyeok;Park, Jin-Soo
    • Particle and aerosol research
    • /
    • v.18 no.3
    • /
    • pp.61-68
    • /
    • 2022
  • In this study, a fluidized bed particle generator was developed to generate an aerosol without supply of compressed air and to increase portability. It was assumed that the mixing ratio of the test particles and beads, the input amount, and the air flow rate supplied to the generator would have effect on the aerosol generation characteristics. The product of these three parameters was set as a characteristic parameter and particle generation characteristics according to the change of the characteristic parameter were observed. As a result, it was confirmed that the input amount of test particles and beads was not suitable as a characteristic parameter and a characteristic parameter expressed as a product of the mass mixing ratio and the air flowrate was newly defined. When the new characteristic parameter is applied, it can be confirmed that the total amount of particles generated from the particle generator is a function of the characteristic parameter. As a result of measuring the amount of particle generation by adjusting the characteristic parameter, it was confirmed that the performance required for the test particle generator for the field inspection equipment of PM-2.5 sensors could be satisfied.

Particle Size Control of Poly(Lactide-co-Glycolide) Microspheres for Oral Antigen Delivery Systems (경구용 항원 수송체 모델로서 폴리락티드-글리콜리드 마이크로스피어의 입자도 조절)

  • Song, Il-Yong;Song, Seo-Hyun;Song, Woo-Heon;Cho, Seong-Wan;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.4
    • /
    • pp.315-321
    • /
    • 1999
  • Poly (lactide-co-glycolide) (PLGA) microspheres containing ovalbumin (OVA) as a model protein drug were prepared by double emulsification method, and various conditions such as mixing rate, volume of outer phase and isopropyl alcohol concentration in outer phase during secondary emulsification were observed to control the size of microspheres. In addition, entrapment efficiency of OVA and protein denaturation were also evaluated. As the rate of stirring was increased, the size of particles was decreased. But excessive stirring increased the particle size of microspheres. In a preparation condition of small volume of outer phase, the particle size was decreased but the entrapment efficiency was increased. Adding isopropyl alcohol to outer phase decreased the size of particles, but increased the entrapment efficiency. Microparticles should have smaller size than $10\;{\mu}m$ to be uptaked by Peyer's patch in small intestine. High speed of mixing and relatively small volume of outer phase are needed to reduce the size. In addition, appropriate amount of isopropyl alcohol in outer phase also plays an important role in size reduction of PLGA microspheres.

  • PDF

Numerical analysis of internal flow and mixing performance in polymer extruder II: twin screw element

  • Kim, Nak-Soo;Kim, Hong-Bum;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.3
    • /
    • pp.153-160
    • /
    • 2006
  • We analyzed the non-Newtonian and non-isothermal flow with Carreau-Yasuda viscosity model in co-rotating and counter-rotating twin screw extruder systems. The mixing performances with respect to the screw speed, the screw pitch, and the rotating direction have been investigated. The dynamics of mixing was studied numerically by tracking the motions of particles. The extent of mixing was characterized in terms of the deformation rate, the residence time distribution, and the average strain. The results showed that the high screw speed decreases the residence time but increases the deformation rate. Small screw pitch increases the residence time. It is concluded that the high screw speed increases the dispersive mixing performance, while the small screw pitch increases the distributive mixing performance. Co-rotating screw extruder has the better conveying performance and the distributive mixing performance than counter-rotating screw extruder with the same screw speed and pitch. Co-rotating screw extruder developed faster transport velocity and it is advantageous the flow characteristics to the mixing that transfers polymer melt from one barrel to the other barrel.

Effects of Solids Content and Mixing Speed in Treatment of Petroleum Hydrocarbon Contaminated Soils using a Bioreactor (고형물함량 및 혼합강도가 생물반응기를 이용한 석유계탄화수소 오염토양의 처리에 미치는 영향)

  • 김수철;남궁완;박대원
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.23-30
    • /
    • 1997
  • The purpose of this study was to evaluate effects of solids content and mixing speed in treatment of petroleum hydrocarbon contaminated soils using a slurry-phase bioreactor. Performance results on slurry-phase bioremediation of diesel fuel contaminated soil were generated at the bench-scale level. The fate of TPH(Total Petroleum Hydrocarbon) was evaluated in combination with biological treatment. Abiotic and biotic fate of the TPH were determined using soil not previously exposed to compounds in diesel fuel. The reactor volume for given throughput can be reduced by maximizing the solids content. Applications of 50% and 20% solids content(dry weight basis) were showed a little difference(57.5% : 61.6%) in biological TPH removal rate each other. Mixing and particle suspension are critical to desorption and biological degradation. In this standpoint, this study was performed using two mixing speed. When the reactor was operated at 70rpm, it had a better result in the particle suspension and TPH removal rate than the reactor with mixer rotated at 20rpm. In the reactor applied 20rpm, it was resulted in failure of particle suspension.

  • PDF

Influence of Screw Rotors Tip Angle on Mixing Performance for One Novel Twin-screw Kneader (2축 스크류 니더의 설계에서 스크류 로터 팁의 각도가 믹싱성능에 미치는 영향)

  • Wei, Jing;Chen, Dabing;Zhou, Dongming;Zhang, Aiqiang;Yang, Yuliang
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.441-452
    • /
    • 2015
  • Twin-screw kneader is an efficient polymer processing equipment. In this paper, the mixing performance of one novel intermeshing counter-rotating twin-screw kneader with different tip angles of the male rotor is simulated using the mesh superimposition technique (MST). Statistical analysis is carried out for the flow field using particle tracking technique, and distributive mixing performance is evaluated using the residence time distribution and segregation scale, while the dispersive mixing performance is estimated using the parameters such as shear rate, stretching rate and mixing index. The results show that the best distributive mixing performance is achieved when the tip angle is 0o, while the optimal dispersive mixing performance is obtained when the tip angle is 20o. The results in this paper provide a data basis for the selection of parameters and optimization of the performance for the screw rotors.

Numerical Study of Internal Flow in Twin Screw Extruder and Its Mixing Performance Analysis (이축 스크루 압출기내 유동의 수치 해석과 혼합 성능 분석)

  • Kim, Nak-Soo;Kim, Hong-Bum;Lee, Jae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.32-41
    • /
    • 2006
  • We analyzed the non-Newtonian and non-isothermal flow in the melt conveying zone in co-rotating and counter-rotating screw extruder system with the commercial code, STAR-CD, and compared the mixing performance with respect to screw speed and rotating direction. The viscosity of fluid was described by power-law model. The dynamics of mixing was studied numerically by tracking the motion of particles in a twin screw extruder system. The extent of mixing was characterized in terms of the residence time distribution and average strain. The results showed that high screw speed decreases the residence time but increases the shear rate. Therefore higher screw speed increases the strain and has better mixing performance. Counter-rotating screw extruder system and co-rotating screw extruder has the similar shear rate with the same screw speed in spite of different rotating direction. However, the counter-rotating screw has good mixing performance, which is resulted from longer residence time than that of co-rotating screw extruder.

Experimental Investigation on the Vortical Flows in a Single-Entry Swirl Mixing Chamber (단일공급 스월 혼합챔버 내의 와류유동에 대한 실험적 연구)

  • Kim, Hyung-Min;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.445-450
    • /
    • 2011
  • Swirling flows inside a swirl mixing chamber are investigated for simple configuration where swirl is produced by a tangential entry type swirl generator. The flow downstream of the swirl generator has been quantified by measurements two velocity components and their corresponding mean values along axial and radial direction using Particle Image Velocimetry(PIV). The mass flow rate of the tangential entry is increased in order to study their effect on the flow field. From the measurement profile of velocity and vorticity, flow mixing characteristics in a swirl mixing chamber are evaluated.

  • PDF

방사성핵종 오염 토양 특성 분석 및 핵종제거 방법 연구

  • 김계남;원휘준;오원진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.209-212
    • /
    • 2002
  • Main radionuclides of the soil waste stored in Korea Atomic Energy Research Institute are Co-60 and Cs-137. Moisture content of soil is 12%, pH of soil is 5.8, and content of organic matter is 2.2 %. Radioactive concentrations of the soil particle size of which is less than 0.063mm and soil in the drum surface of which is more than radiation dose rate 0.05mR/hr are higher. Meanwhile, radioactive concentration of soil in the drum surface of which is less than radiation dose rate 0.02 mR/hr are mostly lower. On using the mixing solution of ammonium sulfate and citric acid, 62% Co was removed from soil and 41% Cs was removed. Also, on using the mixing solution of ammonium nitrate and citric acid, 61% Co was removed from soil and 39% Cs was removed, and on using the mixing solution of ammonium potassium oxalate, 36% Co was removed and only 3% Cs was removed. And on using only water, removal efficiency is less than 5%.

  • PDF

A Strength Change of the Concrete Mixed with Waste Type due to Fire (화재에 의한 폐타이어 혼합 콘크리트강도 변화에 관한 실험적 연구)

  • 손기상
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.22-26
    • /
    • 2002
  • It is very important to find out how to economically recycle waste tyres thrown away from the industry to the field. This one is also consistent with environmentally-friend policy. Many papers have been produced for focusing on the strength using waste-tyre material. Now, many kind of particle sizes of waste-tyre material are being produced in Korea, with support of the government. This study is to figure out how much the waste tyre mixing concrete resists against temperature at fire and how much decrease rate it shows. All the result are compared here in order to find out the way to applicate it to the practical structure for this area. The mixing proportion rate is selected with an experience and try-and error method. Eventually some of distinctive results are mentioned in the conclusion. The waste tyre concrete heated with $600^{\circ}C$ temperature was almost no change of its strength comparing with the normal one.

Characteristics of particle mixing and detection of poor fluidization in a fluidized bed ash cooler (유동층 저회냉각기에서의 입자 혼합특성과 비유동 진단)

  • Kim, D.W.;Lee, J.M.;Kim, J.S.;Kim, J.J.
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.231-237
    • /
    • 2005
  • Interruption of good fluidization in a fluidized bed ash cooler(FBAC) for discharging bed materials such as sand or coal ash particles from the CFB combustor is frequently happened because of agglomeration of the particles in the bed. This unstable operation may, in the worst case, result in an unscheduled boiler shut down. In this study, we examined the operation problems of the FBAC of Tonghae CFB boiler and studied and introduced the simple detection and solution techniques with analyzing the mixing property and the occurrence of defluidization in a simulated fluidized bed ash cooler system (0.5m-H x 0.5m-W x 1.0m-L). The bridge of the large particles at the bed surface could be observed, and this caused to form the defluidization area at the entrance of the FBAC. The defluidization was affected not only by airflow rates but also by the particles discharging rates as well as particle size distribution in the FBAC. The local defluidization could be detected by analysis of the accumulated standard deviation error at a given period of time. Also, the regulation of the overall or local airflow rate made clearing up the local defluidization possible.

  • PDF