• Title/Summary/Keyword: Particle Manipulation

Search Result 24, Processing Time 0.032 seconds

Finite Element Analysis of a Particle Manipulation System Using Ultrasonic Standing Wave (정재초음파를 이용한 입자제어 시스템의 유한요소해석)

  • Cho, Seung-Hyun;Park, Jae-Ha;Ahn, Bong-Young;Kim, Ki-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.3-9
    • /
    • 2010
  • Micro particles in fluid can be manipulated by using ultrasonic standing wave since the ultrasound makes particles move by means of its acoustic radiation force. This work concerns the micro particle manipulation system using ultrasonic standing wave which consists of a microchannel, a reflector, and an ultrasonic transduer. In the present system, the effects of the structural elements should be carefully considered to comprehend the system and find the optimal operational condition. In this investigation, finite element analysis was employed to analyze the system. Some interesting characteristics on the reflector thickness, the channel width, and the operational frequency were observed. Several experimental results were compared with the analytic results. Consequently, this work solidifies the importance of those system parameters and reveals the possibility of various applications of the particle manipulation using ultrasonic standing wave.

Finite Element Analysis of a Particle Manipulation System Using Ultrasonic Standing Wave (정재초음파를 이용한 입자제어 시스템의 유한요소해석)

  • Cho, Seung-Hyun;Park, Jae-Ha;Ahn, Bong-Young;Kim, Ki-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.565-570
    • /
    • 2009
  • Micro particles in fluid can be manipulated by using ultrasonic standing wave since the ultrasound makes particles move by means of its acoustic radiation force. This work concerns the micro particle manipulation system using ultrasonic standing wave which consists of a microchannel, an adaptive layer, a reflector, and an ultrasonic transduer. In the present system, the effects of the structural elements should be carefully considered to comprehend the system and find the optimal operational condition. In this investigation, finite element analysis was employed to analyze the system. Some interesting characteristics on the reflector thickness, the channel width, and the operational frequency were observed. Several experimental results were compared with the analytic results. Consequently, this work solidifies the importance of those system parameters and reveals the possibility of various applications of the particle manipulation using ultrasonic standing wave.

  • PDF

Design of Non-stick Micromanipulation for Handling of Micro particle (초소형 부품 조작을 위한 Non-stick 마이크로 매니퓰레이션 시스템의 설계)

  • Ihn, Y.S.;Kim, Y.C.;Choi, H.R.;Lee, S.M.;Koo, J.C.
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.3
    • /
    • pp.225-232
    • /
    • 2009
  • In the high precision robot systems, the most popular tasks may be handling of micro-scale objects on a surface such as a micromanipulation robot system. In handling of micro-scale objects, the stiction effect becomes a fundamental issue since the micro-contact mechanics dominates the micromanipulation robot system. In the paper, a theoretical non-stick condition derived from the micro-contact mechanics is carried out for the propose of micro-scale object manipulation. To verify the non-stick condition, a micro-manipulation robot system equipped with a high precision stage system and a microscope system is developed. Experimental results show that the proposed non-stick condition guarantees successful micro-scale object manipulation.

  • PDF

Nanoparticle Manipulation Using Atomic Force Microscope and X-Y Stage

  • Liu, T.S.;Wen, B.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1542-1546
    • /
    • 2003
  • Nanotechnology is an important challenge, for which nanoparticle manipulation plays an important role in the assembly of nano elements. In this study, the dynamic equation of system plant is established by van der Waals force, friction, capillary forces etc. To push nanoparticles, strain gauges are used as sensors to actuate an X-Y stage in an atomic force microscopy system. A strategy of pushing nanoparticles is developed based on sliding mode control. Moreover, afuzzy controller is responsible for compensating tip-particle contact loss according to feedback signals of a laser-detector system. According to position control result, experimental results of gold nanoparticle manipulation are presented.

  • PDF

Opto-electrokinetic Technique for Microfluidic Manipulation of Microorganism (광-전기역학 기술을 이용한 미생물의 미세유체역학적 제어)

  • Kwon, Jae-Sung
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.69-77
    • /
    • 2019
  • This paper introduces microfluidic manipulation of microorganism by opto-electrokinetic technique, named rapid electrokinetic patterning (REP). REP is a hybrid method that utilizes the simultaneous application of a uniform electric field and a focused laser to manipulate various kinds and types of colloidal particles. Using the technique in preliminary experiments, we have successfully aggregated, translated, and trapped not only spherical polystyrene, latex, and magnetic particles but also ellipsoidal glass particles. Extending the manipulation target to cells, we attempted to manipulate saccharomyces cerevisiae (S. cerevisiae), the most commonly used microorganism for food fermentation and biomass production. As a result, S. cerevisiae were assembled and dynamically trapped by REP at arbitrary location on an electrode surface. It firmly establishes the usefulness of REP technique for development of a high-performance on-chip bioassay system.

A Comparative Study of Listener Perception of Durational Change in the Korean Auxiliary Particle '-yo' (보조사 '-요'의 음장 변화에 따른 청자의 지각 차이 비교)

  • Yoon, Eun-Kyung;Kim, Sul-Ki
    • Phonetics and Speech Sciences
    • /
    • v.3 no.4
    • /
    • pp.55-62
    • /
    • 2011
  • This paper investigates whether listeners perceive a different level of politeness when the duration of the Korean sentence-final auxiliary particle '-yo' is varied. A total of 10 Korean sentences were manipulated by lengthening and shortening '-yo' by 10%, 20%, and 30%. The participants included native Korean speakers and Chinese and Japanese learners of Korean (n=10, respectively). They were asked to rate the level of politeness of the stimuli on a 9-point scale. It was found that Korean listeners perceived decreased politeness as the duration of '-yo' was shortened and increased politeness as it was lengthened. However, Chinese and Japanese listeners did not perceive a different level of politeness from the manipulated sentences. This finding suggests that it is important to teach L2 speakers that the duration of the auxiliary particle '-yo' plays a role in Korean listeners' perception of politeness.

  • PDF

Characteristic analysis and design of a precise manipulation device using surface acoustic wave (표면탄성파를 이용한 이송장치의 IDT 형상 변화에 따른 특성 연구)

  • Eom, Jinwoo;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.79-83
    • /
    • 2014
  • In this paper, SAW devices are fabricated using various IDT shape(Single/Double) to check an effect of the IDT on SAW device. And based on theory of a particle velocity moved by SAW and IDT, a particle velocity is measured and calculated. Depend on insert power, a particle velocity using Single-IDT SAW device is about two times bigger than Double-IDT SAW device and it's almost same with a theoretical different.

  • PDF

Characterization of Dielectrophoretic Force for the Structural Shapes of Window in Microfluidic Dielectrophoretic Chip (미세유체칩내 electrode의 opening window형태에 따른 유전전기영동력 특성 규명)

  • Lee, Jaewoo;Kwak, Tae Joon;Yoon, Dae Sung;Lee, Sang Woo
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.189-196
    • /
    • 2013
  • Dielectrophoresis(DEP) is useful in manipulation and separation of micro-sized particles including biological samples such as bacteria, blood cells, and cancer cells in a micro-fluidic device. Especially, those separation and manipulation techniques using DEP in combination of micro fabrication technique have been researched more and more. Recently, it is revealed that a window structure of insulating layer in microfluidic DEP chip is key role in trap of micro-particles around the window structure. However, the trap phenomenon-driven by DEP force gradient did not fully understand and is still illusive. In this study, we characterize the trap mechanism and efficiency with different shapes of window in a microfluidic DEP chip. To do this characterization, we fabricated 4 different windows shapes such as rhombus, circle, squares, and hexagon inside a micro-fluidic chip, and performed micro-sized particles manipulation experiments as varying the frequency and voltage of AC signal. Moreover, the numerical simulation with the same parameters that were used in the experiment was also performed in order to compare the simulation results and the experimental results. Those comparison shows that both results are closely matched. This study may be helpful in design and development of microfluidic DEP chip for trapping micro-scaled biological particle.

Fabrication and Manipulation of Gold 1D Chain Assemblies Using Magnetically Controllable Gold Nanoparticles

  • Kim, Lily Nari;Kim, Eun-Geun;Kim, Junhoi;Choi, Sung-Eun;Park, Wook;Kwon, Sunghoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3735-3739
    • /
    • 2012
  • We have developed magnetically controllable gold nanoparticles by synthesizing superparamagnetic $Fe_3O_4$ core/gold shell nanoparticles. The core/shell particles have the capability of forming gold 1D chains in the presence of an external magnetic field. Here we demonstrate dynamic and reversible self-assembly of the gold 1D chain structures in an aqueous solution without any templates or physical or chemical attachment. The spatial configuration of gold chains can be arbitrarily manipulated by controlling the direction of a magnetic field. This technique can provide arbitrary manipulation of gold 1D chains for fabrication purpose. To demonstrate this capability, we present a technique for immobilization of the gold particle chains on a glass substrate.