• Title/Summary/Keyword: Particle Injection

검색결과 445건 처리시간 0.023초

바이오-에탄올연료 및 분사방식에 따른 엔진 나노입자 배출 특성 (Emission Characteristics of Nano-sized Particles in Bio-ethanol Fuelled Engine with Different Injection Type)

  • 이진욱
    • 한국자동차공학회논문집
    • /
    • 제17권4호
    • /
    • pp.55-62
    • /
    • 2009
  • As an experiment investigation, the effects of ethanol blended gasoline fuel with different injection method on nano-sized particle emission characteristics were examined in a 0.5L spark-ignited single-cylinder engine with a compression ratio of 10. Because this engine nano-particles are currently attracting interest due to its adverse health effects and their impact on the environments. So a pure gasoline and an ethanol blended gasoline fuels, namely E85 fuel, used for this study. And, as a particle measuring instrument, a fast-response particle spectrometer (DMS 500) with heated sample line was used for continuous measurement of the particle size and number distribution in the size range of 5 to 1000nm (aerodynamic diameter). As this research results, we found that the effect of ethanol blending gasoline caused drastic decrease of nano-particle emissions when port fuel injection was used for making better air-fuel mixture than direct fuel injection. Also injection timing, specially direct fuel injection, could be a dominant factor in controlling the exhaust particle emissions.

미세입자 분사가공 시 표면 조건 변화에 따른 가공 표면 형상 분석 (Analysis of Machined Surface Morphology According to Changes of Surface Condition in Micro Particle Blasting)

  • 최성윤;황철웅;권대규
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.70-75
    • /
    • 2018
  • This study analyzes the change of Al 6061-T6 specimen surface shape when undergoing microparticle spraying and analyzes the influence of factors on the experiment. Fine particle spraying is applied to the specimen and the surface shape of the processed surface is measured through a surface shape measuring device. The measured data was analyzed by the ANOVA method to investigate the effect of factors such as particle, nozzle diameter, pressure, injection height, and injection time on the injection depth and injection diameter.

가스-입자 동시주입법에 의한 A356/SiCp 복합재료의 제조 및 기계적 특성 (Fabrication and Mechanical Properties of A356/SiCp Manufactured by Gas-Particle Co-injection Method)

  • 이정무;강석봉;엄칠용;임차용
    • 한국주조공학회지
    • /
    • 제21권1호
    • /
    • pp.33-40
    • /
    • 2001
  • Among the many techniques available to synthesis metal matrix composites, liquid phase processing, especially, conventional casting process such as stir-casting process is particularly attractive for their simplicity, economy and flexibility, In the present study, A356/20%SiCp composites were fabricated by gas-particle co-injection method. The gas-particle co-injection method is a modified stir-casting method and the corporation of particle could be improved by acceleration of particles due to rotation of impeller and gas purging. The microstructures and mechanical properties such as tensile properties and resistance to wear of fabricated materials were examined. Further, the particle injection mechanism in gas-particle co-injection method was discussed.

  • PDF

ENHANCEMENT OF DRYOUT HEAT FLUX IN A DEBRIS BED BY FORCED COOLANT FLOW FROM BELOW

  • Bang, Kwang-Hyun;Kim, Jong-Myung
    • Nuclear Engineering and Technology
    • /
    • 제42권3호
    • /
    • pp.297-304
    • /
    • 2010
  • In the design of advanced light water reactors (ALWRs) and in the safety assessment of currently operating nuclear power plants, it is necessary to evaluate the possibility of experiencing a degraded core accident and to develop innovative safety technologies in order to assure long-term debris cooling. The objective of this experimental study is to investigate the enhancement factors of dryout heat flux in debris beds by coolant injection from below. The experimental facility consists mainly of an induction heater, a double-wall quartz-tube test section containing a steel-particle bed and coolant injection and recovery condensing loop. A fairly uniform heating of the particle bed was achieved in the radial direction and the axial variation was within 20%. This paper reports the experimental data for 3.2 mm and 4.8 mm particle beds with a 300 mm bed height. The dryout heat density data were obtained for both the top-flooding and the forced coolant injection from below with an injection mass flux of up to $1.5\;kg/m^2s$. The dryout heat density increased as the rate of coolant injection increased. At a coolant injection mass flux of $1.0\;kg/m^2s$, the dryout heat density was ${\sim}6.5\;MW/m^3$ for the 4.8 mm particle bed and ${\sim}5.6\;MW/m^3$ for the 3.2 mm particle bed. The enhancement factors of the dryout heat density were 1.6-1.8.

상용디젤엔진의 EURO-IV 배기규제 대응을 위한 Urea-SCR 시스템의 나노입자 배출특성에 관한 실험적 연구 (An Experimental Study of Nano PM Emission Characteristics of Commercial Diesel Engine with Urea-SCR System to Meet EURO-IV)

  • 이천환;조택동
    • 한국자동차공학회논문집
    • /
    • 제15권6호
    • /
    • pp.128-136
    • /
    • 2007
  • It is well known that two representative methods satisfy EURO-IV regulation from EURO-III. The first method is to achieve the regulation through the reduction of NOx in an engine by utilizing relatively high EGR rate and the elimination of subsequently increased PM by DPF. However, it results in the deterioration of fuel economy due to relatively high EGR rate. The second is to use the high combustion strategy to reduce PM emission by high oxidation rate and trap the high NOx emissions with DeNOx catalysts such as Urea-SCR. While it has good fuel economy relative to the first method mentioned above, its infrastructure is demanded. In this paper, the number distribution of nano PM has been evaluated by Electrical Low Pressure Impactor(ELPI) and CPC in case of Urea-SCR system in second method. From the results, the particle number was increased slightly in proportion to the amount of urea injection on Fine Particle Region, whether AOC is used or not. Especially, in case of different urea injection pressure, the trends of increasing was distinguished from low and high injection pressure. As low injection pressure, the particle number was increased largely in accordance with the amount of injected urea solution on Fine Particle Region. But Nano Particle Region was not. The other side, in case of high pressure, increasing rate of particle number was larger than low pressure injection on Nano Particle Region. From the results, the reason of particle number increase due to urea injection is supposed that new products are composited from HCNO, sulfate, NH3 on urea decomposition process.

반응 조건에 따른 규산마그네슘의 입도 변화 및 폴리올 정제 능력평가 (Change of Particle Size of Magnesium Silicate According to Reaction Conditions and Evaluation of Its Polyol Purification Ability)

  • 유종렬;정홍인;강동균;박성호
    • Korean Chemical Engineering Research
    • /
    • 제58권1호
    • /
    • pp.84-91
    • /
    • 2020
  • 염기성 폴리올 및 식용유 정제에 사용하는 합성 규산마그네슘의 효율성은 정제능력과 여과속도를 통해 평가되며, 규산마그네슘의 입도 및 표면적에 따라 영향을 받는다. 본 연구에서는 합성변수인 반응온도, 주입속도, 주입순서(Si, Mg), Mg/Si의 반응몰비가 규산마그네슘의 입도에 미치는 영향을 조사하였다. 합성된 규산마그네슘은 합성공정, 분쇄공정, 정제공정으로 비교 분석되었다. 합성공정에서 반응 온도와 주입 속도는 규산마그네슘의 평균입도 변화에 영향을 주지않는 반면, Mg/Si의 반응몰비와 주입 순서는 평균입도 변화에 주된 요인으로 작용하였다. 합성 후 규산마그네슘의 평균입도는 반응몰비가 0.125에서 0.500로 증가할 때 Mg 주입 시 약 54.4 ㎛에서 63.1 ㎛로 약 8.7 ㎛ 증가하였고, Si 주입 시 47.3 ㎛에서 52.1 ㎛로 약 4.8 ㎛ 증가하였다. 주입 순서 별 평균입도를 비교해보면 Mg 주입 시 59.1 ㎛, Si 주입 시 48.4 ㎛로 약 10.7 ㎛의 평균입도 차이를 보였으며 Mg을 주입하는 조건에서 약 2배 빠른 수세여과속도가 관찰되었다. 즉, 입도가 증가함에 따라 여과 시간이 단축되고 수세여과속도 증가로 생산성 향상에 기여할 수 있었다. 여과 후 분리된 cake형태의 규산마그네슘은 건조과정을 통해 단단한 고형체가 되고 분쇄공정을 통해 분말형태의 흡착제로 사용된다. 건조된 규산마그네슘의 물리적 강도가 감소함에 따라 분말의 평균입도가 감소하고, 이 강도는 반응몰비에 영향을 받는 것을 확인하였다. Mg주입 시 Mg/Si의 반응몰비가 증가함에 따라 규산마그네슘의 물리적 강도가 감소하여 분쇄 후 평균입도가 합성 후 평균입도에 비해 약 40% 감소하는 것을 관찰하였다. 이러한 강도감소는 평균입도 감소와 분쇄 후 미분량의 증가로 정제능력의 향상을 가져왔지만 정제여과속도 감소를 가져왔다. Mg 주입 시 반응몰비가 0.125에서 0.5로 증가할 동안 정제능력은 약 1.3 배가 증가하였으나 정제여과속도는 약 1.5 배가 감소하였다. 따라서 규산마그네슘의 생산성 향상을 위해서는 Mg/Si의 반응몰비를 증가시켜야 하지만, 폴리올의 정제여과속도를 증가시키기 위해선 반응몰비를 감소시켜야 한다. 규산마그네슘의 합성변수 중 주입순서와 Mg/Si의 반응몰비는 합성 후 평균입도와 분쇄 후 평균입도 및 미분량 변화에 영향을 주는 주요인자로 생산성 및 정제능력을 결정짓는 중요한 합성변수이다.

적접분사식 LPG엔진에서 연료분사압력이 연소/배기특성에 미치는 영향 연구 (Effects of Injection Pressures on Combustion and Emissions in a Direct Injection LPG Spark Ignition Engine)

  • 이석환;조준호;오승묵
    • 한국분무공학회지
    • /
    • 제16권1호
    • /
    • pp.7-14
    • /
    • 2011
  • High pressure LPG fuel spray with a conventional swirl injector was visualized and the impact of the injection pressure was also investigated using a DISI (direct injection spark ignition) LPG single cylinder engine. Engine performance and emission characteristics were evaluated over three different injection pressure and engine loads at an engine speed of 1500 rpm. The fuel spray pattern appeared to notably have longer penetration length and narrower spray angle than those of gasoline due to its lower angular momentum and rapid vaporization. Fuel injection pressure did not affect combustion behaviors but for high injection pressure and low load condition ($P_{inj}$=120 bar and 2 bar IMEP), which was expected weak flow field configuration and low pressure inside the cylinder. In terms of nano particle formation the positions of peak values in particle size distributions were not also changed regardless of the injection pressure, and its number densities were dramatically reduced compared to those of gasoline.

가솔린 직접 분사식 엔진에서 연료 분사 압력 증가에 따른 연소 및 배기 배출물 특성 (The Combustion and Emission Characteristics with Increased Fuel Injection Pressure in a Gasoline Direct Injection Engine)

  • 이준순;이용규
    • 한국분무공학회지
    • /
    • 제22권1호
    • /
    • pp.1-7
    • /
    • 2017
  • Recently, Performance and fuel efficiency of gasoline engines have been improved by adopting direct injection (DI) system instead of port fuel injection (PFI) system. However, injecting gasoline fuel directly into the cylinder significantly reduces the time available for mixing and evaporation. Consequently, particulate matters(PM) emissions increase. Moreover, as the emission regulations are getting more stringent, not only the mass but also the total number of PM should be reduced to satisfy the Euro VI regulations. Increasing the fuel injection pressure is one of the methods to meet this challenge. In this study, the effects of increased fuel injection pressures on combustion and emission characteristics were experimentally examined at several part load conditions in a 1.6 liter commercial gasoline direct injection engine. The main combustion durations decreased about $2{\sim}3^{\circ}$ in crank angle base by increasing the fuel injection pressure due to enhanced air-fuel mixing characteristics. The exhaust emissions and number concentration distributions of PM with particle sizes were also compared. Due to enhanced combustion characteristics, THC emissions decreased, whereas NOx emissions increased. Also, the number concentrations of PM, larger than 10 nm, also significantly decreased.

소형디젤기관의 연료분사조건에 따른 연소 및 미세입자 배출 특성에 관한 연구 (The Effect of Fuel Injection Strategy on Combustion and Nano-particle Emissions in a Small Diesel Engine)

  • 강석호;이성욱;엄동섭
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.98-106
    • /
    • 2014
  • Emission standards for passenger diesel engines are becoming more and more stringent. Especially, Europe started the regulation of nano-particles from 2011 with EURO 5b. The objective of this study is to investigate the effect of fuel injection strategy on combustion and nano-particle emission in a small diesel engine. In this study, we conducted combustion analysis and measured both the weight of PM and number of nano-particels. At first, the optimum injection timing was determined with fixed engine operating conditions, such as engine speed, load, and fuel injection quantity. After that, the injection timing was controlled, and the effect of pilot injection was investigated. The number of nano-particles increased as engine load decreases, and it increased up to 10 times depending on the change of injection timing. The weight of PM emissions was increased at low load, and the PM emissions increased with increasing the number of pilot injections.

충진층식 세정집진기의 집진특성 실험 (An Experiment on the Particle Collection Characteristics in a Packed Wet Scrubber)

  • 유경훈;노희환;최은수;김종균
    • 설비공학논문집
    • /
    • 제15권4호
    • /
    • pp.305-311
    • /
    • 2003
  • DOP aerosol particles with geometric mean diameter of 0.5-3.0 ${\mu}{\textrm}{m}$, geometric standard deviation of 1.1-1.3 and total number concentration of 1,500-8,000 Particles/㎤ were used to determine collection efficiencies of a packed wet scrubber with respect to particle size. The tested operating variables included air velocity and water injection rate. It was shown from the experimental results that the collection efficiencies increased with increasing water injection rate and decreasing air velocity. Meanwhile, as for the particle size variation, all of the collection efficiency curves increased rapidly between 0.57-1.41${\mu}{\textrm}{m}$ for the range of water injection rate above 30 L/min. It was also seen that the collection efficiency of a packed wet scrubber is mainly governed by the mechanism of inertial impaction.