• 제목/요약/키워드: Particle Focusing

검색결과 106건 처리시간 0.028초

Modified mixing coefficient for the crossflow between sub-channels in a 5 × 5 rod bundle geometry

  • Lee, Jungjin;Lee, Jun Ho;Park, Hyungmin
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2479-2490
    • /
    • 2020
  • We performed experiments to measure a single-phase upward flow in a 5 × 5 rod bundle with spacer grids using a particle image velocimetry, focusing on the crossflow. The Reynolds number based on the hydraulic diameter and the bulk velocity is 10,000. The ratio of pitch between rods and rod diameter is 1.4 and spacer grid is installed periodically. The turbulence in the rod bundle results from the combination of a forced mixing and natural mixing. The forced mixing by the spacer grid persists up to 10Dh from the spacer grid, while the natural mixing is attributed to the crossflow between adjacent subchannels. The combined effects contribute to a sinusoidal distribution of the time-averaged stream-wise velocity along the lateral direction, which is relatively weak right behind the spacer grid as well as in the gap. The streamwise and lateral turbulence intensities are stronger right behind the spacer grid and in the gap. Based on these findings, we newly defined a modified mixing coefficient as the ratio of the lateral turbulence intensity to the time-averaged streamwise velocity, which shows a spatial variation. Finally, we compared the developed model with the measured data, which shows a good agreement with each other.

Physics of Solar Flares

  • Magara, Tetsuya
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2010년도 한국우주과학회보 제19권1호
    • /
    • pp.25.1-25.1
    • /
    • 2010
  • This talk outlines the current understanding of solar flares, mainly focusing on magnetohydrodynamic (MHD) processes. A flare causes plasma heating, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes related to a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), formation of current-concentrated areas (current sheets) in the corona, and magnetic reconnection proceeding in current sheets that causes shock heating, mass ejection, and particle acceleration. A flare starts with the dissipation of electric currents in the corona, followed by various dynamic processes which affect lower atmospheres such as the chromosphere and photosphere. In order to understand the physical mechanism for producing a flare, theoretical modeling has been developed, in which numerical simulation is a strong tool reproducing the time-dependent, nonlinear evolution of plasma before and after the onset of a flare. In this talk we review various models of a flare proposed so far, explaining key features of these models. We show observed properties of flares, and then discuss the processes of energy build-up, release, and transport, all of which are responsible for producing a flare. We come to a concluding view that flares are the manifestation of recovering and ejecting processes of a global magnetic flux tube in the solar atmosphere, which was disrupted via interaction with convective plasma while it was rising through the convection zone.

  • PDF

열적-알칼리성 전처리 유무에 따른 폴리하이드록시부티레이트의 고온 혐기성 소화 영향 연구 (Thermophilic Anaerobic Digestion of Polyhydroxybutyrate with and without Thermo-alkaline Pretreatment)

  • 이지현;이준엽
    • 한국환경과학회지
    • /
    • 제33권2호
    • /
    • pp.121-129
    • /
    • 2024
  • The study investigated the effect of thermo-alkaline pretreatment on the solubilization of polyhydroxybutyrate (PHB) and its potential to enhance of thermophilic anaerobic digestion, focusing on biochemical methane potential (BMP) and methane production rate, using two different particle sizes of PHB (1500 ㎛ and 400 ㎛). Thermo-alkaline pretreatment tests were conducted at 90 ℃ for 24 hours with varying NaOH dosages from 0-80% (w/w). BMP tests with untreated PHB exhibited methane production ranging from 150.4~225.4 mL CH4/g COD and 21.5~24.2 mL CH4/g VSS/d, indicating higher methane production for smaller particle sizes of PHB, 400 ㎛. Thermo-alkaline pretreatment tests achieved a 95.3% PHB solubilization efficiency when 400 ㎛ PHB particles were treated with 80% NaOH dosage at 90 ℃ for 24 hours. BMP tests with pretreated PHB showed substantial improvement in thermophilic anaerobic digestion, with an increase of up to 112% in BMP and up to 168% in methane production rate. The results suggest that a combined pretreatment process, including physical (400 ㎛ PHB particles) and thermo-alkaline (90 ℃, 40-80% NaOH dosage, and 24 hours reaction time), is required for high-rate thermophilic anaerobic digestion of PHB with enhanced methane production.

자갈하천의 하상재료분석을 위한 화상해석법 적용: 남강을 중심으로 (An application of image processing technique for bed materials analysis in gravel bed stream: focusing Namgang)

  • 김기흥;정혜련
    • 한국수자원학회논문집
    • /
    • 제51권8호
    • /
    • pp.655-664
    • /
    • 2018
  • 하상재료 조사는 유사량 계산 및 하상변동과 같은 하도 계획에 필요한 기초 자료로서 입도분포, 비중, 다공성 등을 조사하는 것이다. 원칙적으로, 조사 지점은 하천 종단 방향으로 1 km 간격이고 하나의 횡단면에 3 개 이상이다. 따라서 조사 대상 하천의 종단 길이에 따라 조사 지점이 아주 많아지기 때문에 조사에 소요되는 시간과 비용이 상당히 증가한다. 본 연구는 입도분석법인 체적법과 화상해석법의 작업 효율성과 비용을 비교하고, 화상해석법의 적용 가능성을 검토하였다. 화상해석법에 의하여 환산된 등가원의 직경이 하상재료 입도분석에 적용될 수 있음을 확인하였다. 또한, 체적법과 화상해석법의 작업효율성과 비용을 분석한 결과 약 80%의 절감효과가 있음을 입증하였다.

쿠마 켄고 건축의 순환성에 관한 연구 - 일본 메타볼리즘 운동의 순환성과 연계를 중심으로 - (A Study on Kuma Kengo's Architecture Works on Circularity - Based on Connectivity with Japanese Metabolism Movement's Circularity -)

  • 이재원;임기택
    • 대한건축학회연합논문집
    • /
    • 제20권6호
    • /
    • pp.9-16
    • /
    • 2018
  • The purpose of this research was influenced by the historical background of Japanese modern architecture by the circulation of Kuma Kengo's architectural works and he wanted to look at the values and directions he was pursuing and how they were expressed in his works. The results of the review are summarized as follows. First, metabolism was developed as a reaction of modernism in modern architecture, focusing on growth through infinite reproduction by looking at architecture and cities as organisms and by using unit space as cells. Kuma Kengo, on the other hand, argues that focusing on the possibility of decimation of unit members by sequencing the elements that make up the space smaller than the unit space is closer to an ecological architecture. Second, what Kuma Kengo says is "erase the architecture" that is naturally related to the environment and disappears when its use is exhausted. His argument is expressed in individual architectural works through 'visual erase', 'particle painting of materials' and 'independence through dependency.' Through this, Kuma Kengo's ecological architectural languages were influenced by the ecological causes of metabolism, but they differed from the perspective of seeing architectural circulation as an organism. If metabolism was intended to realize circulation with growth potential based on the module of unit space, Kuma Kengo sought to implement circulation with the extinction of the unit members of space.

Particle loading as a design parameter for composite radiation shielding

  • Baumann, N.;Diaz, K. Marquez;Simmons-Potter, K.;Potter, B.G. Jr.;Bucay, J.
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3855-3863
    • /
    • 2022
  • An evaluation of the radiation shielding performance of high-Z-particle-loaded polylactic acid (PLA) composite materials was pursued. Specimens were produced via fused deposition modeling (FDM) using copper-PLA, steel-PLA, and BaSO4-PLA composite filaments containing 82.7, 75.2, and 44.6 wt% particulate phase contents, respectively, and were tested under broad-band flash x-ray conditions at the Sandia National Laboratories HERMES III facility. The experimental results for the mass attenuation coefficients of the composites were found to be in good agreement with GEANT4 simulations carried out using the same exposure conditions and an atomistic mixture as a model for the composite materials. Further simulation studies, focusing on the Cu-PLA composite system, were used to explore a shield design parameter space (in this case, defined by Cu-particle loading and shield areal density) to assess performance under both high-energy photon and electron fluxes over an incident energy range of 0.5-15 MeV. Based on these results, a method is proposed that can assist in the visualization and isolation of shield parameter coordinate sets that optimize performance under targeted radiation characteristics (type, energy). For electron flux shielding, an empirical relationship was found between areal density (AD), electron energy (E), composition and performance. In cases where ${\frac{E}{AD}}{\geq}2MeV{\bullet}cm{\bullet}g^{-1}$, a shield composed of >85 wt% Cu results in optimal performance. In contrast, a shield composed of <10 wt% Cu is anticipated to perform best against electron irradiation when ${\frac{E}{AD}}<2MeV{\bullet}cm{\bullet}g^{-1}$.

유체역학적 집속 효과를 이용한 단일 박테리아 주화성의 정량적 분석 (Quantitative Analysis of Single Bacterial Chemotaxis Using a Hydrodynamic Focusing Channel)

  • 전호정;이용구;진송완;구상모;이창수;유정열
    • 대한기계학회논문집B
    • /
    • 제31권3호
    • /
    • pp.209-216
    • /
    • 2007
  • Bacterial chemotaxis is essential to the study of structure and function of bacteria. Although many studies have accumulated the knowledge about chemotaxis in the past, the motion of a single bacterium has not been studied much yet. In this study, we have developed a device microfabricated by soft lithography and consisting of microfluidic channels. The microfluidic assay generates a concentration gradient of chemoattractant linearly in the main channel by only diffusion of the chemicals. Bacteria are injected into the main channel in a single row by hydrodynamic focusing technique. We measured the velocity of bacteria in response to a given concentration gradient of chemoattractant using the microfludic assay, optical systems with CCD camera and simple PTV (Particle Tracking Velocimetry) algorithm. The advantage of this assay and experiment is to measure the velocity of a single bacterium and to quantify the degree of chemotaxis by statistically analyzing the velocity at the same time. Specifically, we measured and analyzed the motility of Escherichia coli strain RP437 in response to various concentration gradients of L-aspartate statistically and quantitatively by using this microfluidic assay. We obtained the probability density of the velocity while RP437 cells are swimming and tumbling in the presence of the linear concentration gradient of L-aspartate, and quantified the degree of chemotaxis by analyzing the probability density.

Investigation of Turbulent Spray Disintegration Characteristics Depending on the Nozzle Configuration

  • Lee, Sam-Goo;Song, Kyu-Keun;Park, Byung-Joon
    • Journal of Mechanical Science and Technology
    • /
    • 제16권4호
    • /
    • pp.572-579
    • /
    • 2002
  • The experimental measurements were carried out to examine turbulent disintegration characteristics ejecting from a counter-flowing internal mixing pneumatic nozzle under variable conditions of swirl angles and air pressures. The air injection pressure was varied from 60 kPa to 180 kPa and four counter-flowing internal mixing nozzles with axi-symmetric tangential-drilled holes at swirl angle of 15$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$, and 60$^{\circ}$to the central axis have been specially designed. The experimental results were quantitatively analyzed, focusing mainly on the comparison of turbulent atomization characteristics issuing from an internal mixing swirl nozzle. To illustrate the swirl phenomena, the distributions of mean velocities, turbulence intensities, volume flux, and SMD (Sauter Mean Diameter, or D$\sub$32/) were comparatively analyzed.

The Current Status and Future Outlook of Quantum Dot-Based Biosensors for Plant Virus Detection

  • Hong, Sungyeap;Lee, Cheolho
    • The Plant Pathology Journal
    • /
    • 제34권2호
    • /
    • pp.85-92
    • /
    • 2018
  • Enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), widely used for the detection of plant viruses, are not easily performed, resulting in a demand for an innovative and more efficient diagnostic method. This paper summarizes the characteristics and research trends of biosensors focusing on the physicochemical properties of both interface elements and bioconjugates. In particular, the topological and photophysical properties of quantum dots (QDs) are discussed, along with QD-based biosensors and their practical applications. The QD-based Fluorescence Resonance Energy Transfer (FRET) genosensor, most widely used in the biomolecule detection fields, and QD-based nanosensor for Rev-RRE interaction assay are presented as examples. In recent years, QD-based biosensors have emerged as a new class of sensor and are expected to open opportunities in plant virus detection, but as yet there have been very few practical applications (Table 3). In this article, the details of those cases and their significance for the future of plant virus detection will be discussed.

Directional Emission from Photonic Crystal Waveguide Output by Terminating with CROW and Employing the PSO Algorithm

  • Bozorgi, Mahdieh;Granpayeh, Nosrat
    • Journal of the Optical Society of Korea
    • /
    • 제15권2호
    • /
    • pp.187-195
    • /
    • 2011
  • We have designed two photonic crystal waveguide (PCW) structures with output focused beams in order to achieve more coupling between photonic devices and decrease the mismatch losses in photonic integrated circuits. PCW with coupled resonator optical waveguide (CROW) termination has been optimized by both one dimensional (1D) and seven dimensional (7D) particle swarm optimization (PSO) algorithms by evaluating the fitness function by the finite difference time domain (FDTD) method. The 1D and 7D-optimizations caused the factors of 2.79 and 3.875 improvements in intensity of the main lobe compared to the non-optimized structure, whereas the FWHM in 7D-optimized structure was increased, unlike the 1D case. It has also been shown that the increment of focusing causes decrement of the bandwidth.