• Title/Summary/Keyword: Particle Contamination

Search Result 214, Processing Time 0.023 seconds

Detection of fluorescence from soils contaminated with monoaromatic hydrocarbons (유류 오염 토양에서의 단일방향족 탄화수소 농도 측정을 위한 자외선 형광 분석에 관한 연구)

  • 김우진;박재우;이주인
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.35-44
    • /
    • 2002
  • In order to determine the contamination of the aromatic hydrocarbons in soil, a fiber-optic sensing technique with fluorescence detector has been proposed. Previous researches have shown that the optimal condition for detecting benzene, toluene, ethylbenzene, xylene (BTEX) was 260 nm /290 nm (excitation/emission wavelength). However, broader fluorescence spectra of BTEX-polluted soil sample ranging from 300 nm to 600 nm were observed. Additionally, the intensity of fluorescence increased with increasing BTEX concentration, which was conspicuous in the fine-particle soil, The overall results indicated that the suggested technique could be useful for in-situ monitoring system for subsurface oil-storage tank.

Plastic scintillator beta ray scanner for in-situ discrimination of beta ray and gamma ray radioactivity in soil

  • Bae, Jun Woo;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1259-1265
    • /
    • 2020
  • A beta ray scanner was proposed for in-situ discrimination of beta and gamma ray radioactivity. This scanner is based on the principle that gamma and beta rays experience different changes in detection efficiency in scintillators with different geometries, especially with regard to the scintillator thickness. The ratios of the counting rates of gamma rays (Rgamma), beta rays (Rbeta), and sample measurements (Rtotal) in a thick scintillator to those in a thin one are reported. The parameter Xthick, which represents the counting rate contributed by beta rays to the total counting rate in the thick scintillator, was derived as a function of those ratios. The values of Rgamma and Rbeta for 60Co and 90Sr sources were estimated as 3.2 ± 0.057 and 0.99 ± 0.0049, respectively. The estimated beta ray contributions had relative standard deviations of 2.05-4.96%. The estimated range of the beta rays emitted from 90Sr was 19 mm as per the Monte Carlo N-Particle simulation, and this value was experimentally verified. Homogeneous and surface contaminations of 60Co and 90Sr-90Y were simulated for application of the proposed method. The counting rate contributed by the beta rays was derived and found to be proportional to the concentration of 90Sr-90Y contamination.

Comparative Study of the Standard Plaque Assay with Solid-overlay and Immunofocus Assay for Varicella-zoster Virus Titration (수두바이러스의 정량에 있어서 Solid-overlay Standard Plaque Assay와 Immunofocus Assay의 효용성 비교 연구)

  • Lee, Hwa-Kyung;Jeong, Yong-Seok
    • The Journal of Korean Society of Virology
    • /
    • v.30 no.1
    • /
    • pp.61-70
    • /
    • 2000
  • Standard plaque assay using agarose-overlay has long been used for titration of many infectious virus particle. Plaque assay for the titration of varicella-zoster virus and its live vaccine requires three intermittent agarose overlay to visualize plaques. Overall procedure of the assay takes at least nine days from virus inoculation and microbe contamination including fungi is frequently accompanied during incubation period. We studied whether an immunofocus assay in conjunction with peroxidase-mediated immunohistochemical reaction may replace the standard plaque assay for the virus titration by comparing the two methods. A linear relationship was observed between number of foci and virus dilution. The number of foci in a given dilution of virus appeared a little higher than counted plaques formed in standard plaque assay. Independent titration results obtained from two assay methods for a given dilution of virus demonstrated a strong correlation ($r^2=0.99$). Foci of virus infected cells as revealed by the enzyme reaction could be counted either 4 days post-infection (p.i.) under low magnification (40X) microscopy, or 6 days p.i. by naked eye observation. Larger size of cell cuture plate, virus adsorption at $35^{\circ}C$, and 10% FBS in diluent appeared to be better conditions for the assay. Immunofocus assay will be an effective and dependable titration method for varicella-zoster virus and its live vaccine in place of the standard plaque assay in respect to accuracy, costs, and experimental convenience.

  • PDF

Detection of foot-and-mouth disease virus (FMDV) and avian influenza virus (AIV) from animal carcass disposal sites using real-time RT-PCR

  • Miguel, Michelle;Kim, Seon-Ho;Lee, Sang-Suk;Cho, Yong-Il
    • Korean Journal of Veterinary Service
    • /
    • v.43 no.2
    • /
    • pp.107-112
    • /
    • 2020
  • Foot-and-mouth disease (FMD) and avian influenza (AI) are highly pathogenic viral disease which affects the livestock industry worldwide. Outbreak of these viruses causes great impact in the livestock industry; thus, disease infected animals were immediately disposed. Burial is the commonly used disposal method for deceased animals. However, there is potential for secondary environmental contamination, as well as the risk that infectious agents persisting in the environment due to the limited environmental controls in livestock burial sites during the decomposition of the carcasses. Therefore, this study aimed to investigate the detection of FMD and AI viruses from animal carcass disposal sites using real-time reverse transcription PCR. Soil samples of more than three years post-burial from livestock carcass disposal sites were collected and processed RNA isolation using a commercial extraction kit. The isolated RNA of the samples was used for the detection of FMDV and AIV using qRT-PCR. Based on the qPCR assay result, no viral particle was detected in the soil samples collected from the animal disposal sites. This indicates that 3 years of burial and their carcass disposal method is efficient for the control or at least reduction of spread infections in the surrounding environment.

Risk Assessment of 30 MeV Cyclotron Facilities (30 MeV 사이클로트론 시설 위험성 평가)

  • Jeong, Gyo-Seong;Kim, Chong-Yeal;Lee, Jin-Woo
    • Journal of Radiation Industry
    • /
    • v.11 no.1
    • /
    • pp.39-45
    • /
    • 2017
  • A cyclotron is a kind of particle accelerator that produces a beam of charged particles for the production of medical, industrial, and research radioisotopes. More than 30 cyclotrons are operated in Korea to produce $^{18}F$, an FDG synthesis at hospitals. A 30-MeV cyclotron was installed at ARTI (Advanced Radiation Technology Institute, KAERI) mainly for research regarding isotope production. In this study, we analyze and estimate the items of risk such as the problems in the main components of the cyclotron, the loss of radioactive materials, the leakage of coolant, and the malfunction of utilities, fires and earthquakes. To estimate the occurrence frequency in an accident risk assessment, five levels, i.e., Almost certain, Likely, Possible, Unlikely, and Rare, are applied. The accident consequence level is classified under four grades based on the annual permissible dose for radiation workers and the public in the nuclear safety law. The analysis of the accident effect is focused on the radioactive contamination caused by radioisotope leakage and radioactive material leakage of a ventilation filter due to a fire. To analyze the risks, Occupation Safety and Health Acts is applied. In addition, action plans against an accident were prepared after a deep discussion among relevant researchers. In this acts, we will search for hazard and introduce the risk assessment for the research 30-MeV cyclotron facilities of ARTI.

Refinement of Gd2O3 inclusions in the GdBa2Cu3O7-δ films fabricated by the RCE-DR process

  • Park, I.;Oh, W.J.;Lee, J.H.;Moon, S.H.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.46-49
    • /
    • 2018
  • To improve in-field critical current densities ($J_c$) of $GdBa_2Cu_3O_{7-{\delta}}$ (GdBCO) coated conductors(CCs) fabricated by the reactive co-evaporation by deposition and reaction (RCE-DR) process, employing the nominal composition of Gd:Ba:Cu=1:1:2.5, we tried to refine the $Gd_2O_3$ particles trapped in the GdBCO superconducting matrix. For this purpose, we carefully selected the processing conditions on the stability phase diagram of GdBCO for this composition. By lowering the growth temperature of $Gd_2O_3$ in the liquid, we could refine the average particle size of $Gd_2O_3$ particles trapped in the GdBCO matrix and also achieve the zero-resistive transition temperatures ($T_{c,zero}$) of 92.3~94.2 K. Unfortunately, however, it was unsuccessful to achieve enhanced in-field $J_c$ values from these samples because of an air-contamination of the amorphous precursor film before its conversion into crystalline GdBCO film, suggesting that any exposure of the amorphous precursor film to air is fatal in obtaining high performance GdBCO CCs via the RCE-DR process.

Investigation on the Leaching Potential of Water-Soluble Metals from Bottom Ashes in Coal-fired Power Plants (화력발전소 바닥재의 수용성 금속이온 용출가능성 조사)

  • Seo, Hyosik;Koh, Dong-Chan;Choi, Hanna
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.39-49
    • /
    • 2022
  • Bottom ash generated from thermal power plants is mainly disposed in landfills, from which metals may be leached by infiltrating water. To evaluate the effect of metals in leachate on soil and groundwater, we characterized bottom ash generated from burning cokes, bituminous coal, the mixture of bituminous coal and wood pellets, and charcoal powder. The bottom ash of charcoal powder had a relatively large particle size, and its wood texture was well-preserved from SEM observation. The bottom ash of charcoal powder and wood pellets had relatively high K concentration from total element analysis. The eluates of the bottom ash samples had appreciable concentrations of Ca, Al, Fe, SO4, and NO3, but they were not a significant throughout the batch test. Therefore, it is considered that there is low possibility of soil and groundwater contamination due to leaching of metal ions and anions from these bottom ash in landfills. To estimate the trend of various trace elements, long-term monitoring and additional analysis need to be performed while considering the site conditions, because they readily adsorb on soil and aquifer substances.

The Enhanced Electrophoresis Method in Leachate System for Repairing of Leaks in Waste Landfill Geomembrane Liner (폐기물 매립지 차수층 누출시 전기영동 복원을 위한 침출수에서의 향상기법)

  • Kim, Jong-Yun;Han, Sang-Jae;Kim, Soo-Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.7-15
    • /
    • 2010
  • In case that the seepage of contaminants into the subsurface has been generated from the waste impoundment by demage of geomembrane liner, it is necessary to repair the leaks of geomembrane liner for minimizing the environmental contamination by electrophoresis method. However, when electrophoresis method is applied to leachate electrolyte system, the phenomenon of clay particles flocculation would be accelerated by the interaction between clay particles and specific chemicals in leachate. In addition, the gravitational settling behaviour would be induced superior to the electrophoretic migration behaviour. Eventually, the limitations of field applicability for using the electrophoresis method are appeared. Therefore, 1-D enhanced electrophoresis method is conducted to prevent the clay flocculation and accelerate the migration of clay particles separately. After the 1-D enhanced electrophoresis experiment, we can get the results that the deflocculation effect of clay particles is increased by electrical repulsion of polymer, which adsorbed in clay particle edge, in case of using PAA dispersing agent.

A Study on Land-cover and Sedimentary Environment Changes Before and After the 2020 Flood in the Seomjin River Chimsil Wetland (섬진강침실습지의 2020년 홍수 전·후 토지피복 및 퇴적환경 변화 연구)

  • Lee, Ye-Seul;Lim, Jeong-Cheol;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.4
    • /
    • pp.15-30
    • /
    • 2021
  • This study analyzed the changes in land-cover and sedimentary environment before and after flooding through drone images and sediment analysis for the Seomjin River Chimsil Wetland. The results showed that the area of some land-covers such as sand bar, grass, and trees were continuously changed. The acidity level of the sediments in the Seomjin River Chimsil Wetland was weakened gradually by flooding and EC was also decreased. The levels of organic matter, effective phosphoric acid, and CEC, however, were fluctuating depending on branches, which seems to be the result of landization as new sedimentary environment was developed and vegetation was settled after the flood. Average mean size of river sediments was found to be fine sand, and it exhibited various particle size characteristics from granule to medium silt depending on the location. As the sedimentary environment changed due to the effects of floods and typhoons, the particles were granulated or grain refined depending on the position. In the Seomjin River Chimsil Wetland, there were factors that could interfere with geomorphic development and sedimentary environment, contamination sources in and around the wetland, and natural threat factors. Therefore, in this study, a conservation and management plan was proposed to remove these threat factors and to preserve the scarcity, naturalness, and dynamics of Seomjin River Chimsil Wetland.

Preventing Plasma Degradation of Plasma Resistant Ceramics via Surface Polishing (내플라즈마성 세라믹의 표면연마를 통한 플라즈마 열화방지)

  • Jae Ho Choi;Young Min Byun;Hyeong Jun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.130-135
    • /
    • 2023
  • Plasma-resistant ceramic (PRC) is a material used to prevent internal damage in plasma processing equipment for semiconductors and displays. The challenge is to suppress particles falling off from damaged surfaces and increase retention time in order to improve productivity and introduce the latest miniaturization process. Here, we confirmed the effect of suppressing plasma deterioration and reducing the etch rate through surface treatment of existing PRC with an initial illumination level of 200 nm. In particular, quartz glass showed a decrease in etch rate of up to 10%. Furthermore, it is believed that micro-scale secondary particles formed on the microstructure of each material grow as crystals during the fluoridation process. This is a factor that can act as a killer defect when dropped, and is an essential consideration when analyzing plasma resistance. The plasma etching suppression effect of the initial illumination is thought to be due to partial over etching at the dihedral angle of the material due to the sputtering of re-emission of Ar+-based cations. This means that plasma damage due to densification can also be interpreted in existing PRC studies. The research results are significant in that they present surface treatment conditions that can be directly applied to existing PRC for mass production and a new perspective to analyze plasma resistance in addition to simple etching rates.

  • PDF