• Title/Summary/Keyword: Particle Characteristics

Search Result 3,886, Processing Time 0.033 seconds

Influence of constraint MgO deposition onto phosphors on luminance properties in AC Plasma Display Panels

  • Jeoung, Jin-Man;OH, P.Y.;Moon, M.W.;Lee, J.H.;Jeong, J.E.;Lee, H.J.;Han, Y.K.;Lee, S.B.;Jeong, S.H.;Yoo, C.K.;Yoo, N.R.;Choi, E.H.;Ko, B.D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1215-1217
    • /
    • 2005
  • One of the important problems in recent AC-PDP technology is the image sticking. In this research, we have investigated the PDP cell with constraint deposition MgO on phosphor, the electrical and optical properties in the PDP cell were examined. Also, we have investigated the correlation with image sticking and degraded MgO protective layer, phosphor in AC-PDP. As a result, we measured the secondary electron emission coefficient ${\gamma}$, discharge characteristics and Brightness for the constraint degraded phosphor are compared with those of nondegraded phosphor.

  • PDF

Effects of Coal Particle Array on Coal Combustion (미분탄 입자들의 배열이 미분탄 연소에 미치는 영향)

  • Cho, Chong-Pyo;Kim, Ho-Young;Chung, Jin-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1321-1328
    • /
    • 2005
  • The burning characteristics of interacting coal particles in a convective flow are numerically investigated at various Reynolds numbers. The transient combustion of 2-dimensionally arranged particles, both the fixed particle distances of 5 radii to 20 radii horizontally and 4 radii to 24 radii vertically, is studied. The results obtained from the present numerical analysis indicate that the transient flame configuration and retardation of particle temperature augmentation with the horizontal or vertical particle spacing substantially influence devolatilization process and carbon conversion ratio of interacting particles. Volatile release and carbon conversion ratio of the second particle with decreasing horizontal and vertical particle spacing decrease gradually, whereas those of the first particle with decreasing vertical particle spacing increase due to flow acceleration. When the vertical particle spacing is smaller than $6R_0$, volatile release and carbon conversion ratio of the second particle decrease due to reduction of flame penetration depth and interference of oxygen diffusion by the first particle.

Characteristics of Particle Deposition onto Cleanroom Wall Panel for Varying Particle Charging Rates (입자하전량에 따른 클린룸 수직벽체로의 입자침착 특성)

  • Kim, Jong-Jun;Noh, Kwang-Chul;Sung, Sang-Chul;Baek, Sun-Ho;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.725-730
    • /
    • 2008
  • In this study, we found out charged particle's deposition characteristic by experiments of $0.5{\mu}m$, $1.0{\mu}m$, $3.0{\mu}m$ size particle's concentration decay. We carried out the experiments on charged particle deposition onto the vertical cleanroom wall panel and some other fundamental experiments. The particle deposition mechanism is consist of sedimentation, convection, diffusion, thermophoresis, electrostatic and so on. Particle size determines mainly working deposition mechanism. The charged particle is made with corona discharge that are constituted field charging and diffusion charging. In addition, this combinational mechanism is called combined charging. The type of corona discharge determines quantity of particle electrical charge. In conclusion, we assumed that quantity of particle electrical charge accelerations deposition velocity onto the vertical cleanroom wall panel and proved it. And we figured out particle's deposition characteristic through compared between our experiment's results.

  • PDF

Extraction of Fractal Shape Characteristics of Wear Particles in Lubricant (윤활유 중지 마멸입자의 프랙탈 형상특징 추출 방법)

  • Park, Heung-Sik;Woo, Kyu-Sung;Cho, Yon-Sang;Kim, Dong-Ho;Ye, Gyoo-Heon
    • Tribology and Lubricants
    • /
    • v.22 no.5
    • /
    • pp.276-281
    • /
    • 2006
  • The fractal dimension is quantitatively to define the irregular characteristic of the shape in natural. It can be useful in describing morphological characteristics of various wear particles. This paper was undertaken to diagnose failure condition for sliding members in lubrication by fractal dimension. It will be possible to diagnose wear mechanism, friction and damage state of machines through analysis of shape characteristics for wear particle on driving condition by fractal parameters. In this study, the calculating and analyzing methods of fractal dimensions were constructed for the condition monitoring and wear particle analysis in lubricant condition. So, we carried out the Friction and wear test with the ball on disk type tester, and the fractal parameters of wear particle in lubricated conditions were calculated. Fractal parameters were defined as texture fractal dimension ($D_{t}$), structure fractal dimension ($D_{s}$) and total fractal dimension (D).

Characteristics of Settling and Consolidation Behavior for Non-Plastic Dredged Soils (비소성 준설토의 침강-압밀 거동 특성)

  • Park, Yun-Gyun;Park, Byung-Soo;Jeong, Gil-Soo;Yoo, Nam-Jea
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.251-261
    • /
    • 2004
  • A series of column test with a silty marine soil mixed with Jumunjin Standard Sand were performed to investigate the characteristics of settling and consolidation of non-plastic dredged soils. Column tests were carried out by using the separable column to measure the grain size distribution of consolidated layer. Column tests were performed with changing the mixing ratio of Jumunjin Standard Sand to the silty marine soil, initial water content of slurry and initial height of slurry. Height of interface of slurry was monitored during tests and grain size distribution tests were carried out after finishing tests. Influencing factors on the particle segregation, eventually to the characteristics of settling and consolidation of non-plastic soil, were analyzed on the thesis of test results. As results of column tests, the mixing ratio of sand to the silty marine soil and the initial water content of slurry were known to affect the characteristics of settling and consolidation resulted in significant particle segregation of slurry. Initial height of slurry was found not to affect seriously to particle segregation.

  • PDF

Comparisons of the Particle Emission Characteristics Between GDI and MPI Vehicles (GDI와 MPI 자동차의 미세입자 배출특성 비교)

  • Lee, Jongtae;Kim, Kijoon;Kim, Jeongsoo;Jang, Jihwan;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.182-187
    • /
    • 2014
  • As the regulations for Particulate Matter (PM) and Particle Number (PN) emissions from Gasoline Direct Injection (GDI) Vehicle stringent recently, a lot of studies have been made on the emission characteristics of PM and PN. In this study, PM and PN emission characteristics were compared to GDI and Multi Port Injection (MPI) Vehicles using the Condensation Particle Counter (CPC) measurement equipment. And driving mode is divided into normal driving mode (CVS-75, NEDC, NIER 6, NIER 9) and a constant speed driving mode (10 km/h, 35 km/h, 80 km/h, 110 km/h) to evaluate the characteristics in the various operating conditions. In the results, most of the driving mode, PM and PN were emitted from GDI Vehicle more than MPI Vehicle. However, in the constant speed mode of 110 km/h, PM and PN from MPI Vehicle were also a lot of emission. It is determined to cause a difficulty in the fuel injection control of the MPI Vehicle.

Hexagonal Shape Characteristics according to the Change in Standoff Distance during Fine Particle Blasting (미세입자 분사가공 시 분사높이 변화에 따른 육각형 가공형상 특성)

  • Lee, Hyoung-Tae;Lee, Sea-Han;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.76-83
    • /
    • 2021
  • This study examines the characteristics of spraying conditions based on the change in standoff distance during fine particle spraying while measuring the surface roughness, maximum depth, and maximum width of the sprayed surface. The processing shape of the sprayed surface is analyzed to understand the effects of injection pressure, nozzle diameter, standoff distance, processing shape, processing cycle, processing speed, and injection particles, which are the main factors of fine particle injection processing. Based on the derived characteristics, we attempt to determine the interrelationships of these major factors. The standoff distance is set as a variable factor and a spray machining experiment using a hexagonal shape (from among polygons) instead of square and circular shapes is conducted. Results reveal that research on the characteristics of spraying conditions could be expanded based on changes in the shapes of workpieces.

CFD Analytical Analysis of Jetting Characteristics in Aerosol Jet Printing Process Using Particle Tracking Technique (입자 추적 기법을 활용한 에어로졸 제트 프린팅 공정의 분사 특성에 대한 CFD 해석적 분석)

  • Sang-Min Chung;Seungwoon Park;Euikeun Choi;Soobin Oh;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • This thesis investigates the jetting characteristics of an aerosol jet printing (AJP) process as a function of design and operating conditions. The governing equations of the AJP system are derived for experimentation and analysis. To understand the characteristics of the AJP system, it analyzes the jetting characteristics as a function of the flow rate of the carrier gas and the sheath gas, and the variation of the linewidth with the nozzle exit size based on particle tracking. The thesis focuses on computational fluid dynamics (CFD), which is a computer simulation. The particle tracking results obtained by CFD were analyzed using MATLAB. CFD analytical models can be analyzed in environments with different conditions and consider more specific situations than mathematical computational models. The validity of the CFD analysis is shown by comparing the experimental results with the CFD analysis.

CFD Analytical Analysis of Jetting Characteristics in Aerosol Jet Printing Process Using Particle Tracking Technique (입자 추적 기법을 활용한 에어로졸 제트 프린팅 공정의 분사 특성에 대한 CFD 해석적 분석)

  • Sang-Min Chung;Seungwoon Park;Euikeun Choi;Soobin Oh;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.8-14
    • /
    • 2024
  • This paper investigates the jetting characteristics of an aerosol jet printing (AJP) process as a function of design and operating conditions. The governing equations of the AJP system are derived for experimentation and analysis. To understand the characteristics of the AJP system, this thesis analyzes the jetting characteristics as a function of the flow rate of the carrier gas and the sheath gas, and the variation of the linewidth with the nozzle exit size based on particle tracking. This thesis focuses on computational fluid dynamics (CFD), which is a computer simulation. The particle tracking results obtained by CFD were analyzed using MATLAB. CFD analytical models can be analyzed in environments with different conditions and consider more specific situations than mathematical computational models. The validity of the CFD analysis is shown by comparing the experimental results with the CFD analysis.