• Title/Summary/Keyword: Particle Image Velocimetry

Search Result 642, Processing Time 0.023 seconds

Identification of the three-dimensional topology of hairpin packet structures in turbulent boundary layers (난류경계층의 헤어핀 다발구조에 대한 3차원 토폴로지 규명)

  • Kwon, Seong-Hoon;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.610-615
    • /
    • 2003
  • This experiment has been carried out to find the structure of turbulent boundary layer with instantaneous velocity fields obtained in stream-wall-normal planes using a stereo-PIV (Particle Image Velocimetry) method. And it has been measured perpendicular plane and horizontal plane with hairpin vortex structure by Reynolds number change and made third dimension shape for section of horizontal plane through stereo-PIV. In the outer layer hairpin vortices occur in streamwise-aligned packets that propagate with small velocity dispersion. A streaky structure is composed of counter-rotating vortex. According as y+ increases, streaky structure's interval space decrease, and it shows that hairpin shape of prior research is vertified. The objective of the present research is to gain a better understanding of coherent structures in the outer of wall turbulence by experimentally examining coherent structures.

  • PDF

Quantitative Visualization of Inlet Flow of the Centrifugal Blower (원심 블로어 입구 유동의 정량적 가시화 연구)

  • Jeong, Tae-Sik;Tu, Xin Cheng;Kim, Sung-Jun;Jang, Hwan-Young;Kim, Jin-Kwang;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.2
    • /
    • pp.27-33
    • /
    • 2013
  • The inlet flow of centrifugal blower were quantitatively visualized using particle image velocimetry. Because the centrifugal blower system is one of the key parts of EV battery cooling system, the quantitative information of flow field of centrifugal blower is important to design and optimize the cooling system. Two types of inlet parts were used in this study. One is the straight inlet and the other is a bended one. The results showed the flow asymmetry exists in the straight model due to the pressure difference in the blower. In case of the bended one, the separation bubble and the increase of head loss appeared compared with the straight model.

Effect of Ambient Pressure on Internal Structure of a DI Gasoline Spray (직분식 가솔린 분무의 내부구조에 미치는 분위기 압력의 영향)

  • 성기진;최동석;김덕줄
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.19-26
    • /
    • 2002
  • The objective of this study is to examine a DI(Direct Injection) gasoline spray development process under different ambient pressures using PIV(Particle Image Velocimetry). fuel spray experiments were performed within a constant volume chamber. The spray structure, velocity maps, velocity and vorticity contours were obtained to investigate its spray characteristics. It was found that higher ambient pressure has a significant effect on radial growth of the spray. The position which has a maximum velocity moved from the spray edge to the spray center as ambient pressure was increased. Higher ambient pressure moved a maximum vorticity position upward of the spray.

Characterization of In-Cylinder Flow of a Small Gasoline Optical Engine (소형 가솔린 가시화엔진의 내부유동 특성연구)

  • Kim, J.S.;Jeong, K.S.;Jeung, I.S.;Cho, K.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.87-95
    • /
    • 1995
  • A commercial DOHC four valve engine was modified to make a single-cylinder optical model engine with replaceable head. Three kinds of head were used to generate swirl, tumble, and combined swirl/tumble motion. Schlieren visualization technique was applied to characterize the in-cylinder flow qualitatively. Particle Image velocimetry has been developed and applied for the quantitative flow measurements. Axial and tangential flow motion inside the cylinder has been characterized. The swirl/tumble port shows beneficial results in terms of turbulence generation for the initial flame propagation and mean swirl motion for the overall flame propagation.

  • PDF

Observing Thermal Counterflow in He II by the Particle Image Velocimetry Technique

  • Van Sciver S. W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2005
  • The Particle Image Velocimetry (PIV) technique can be used to obtain a whole-field view of thermal counterflow velocity profile in He II. Using commercially available microspheres, we have been able to visualize the normal fluid velocity in He II thermal counterflow; however, the measured velocities are less than predicted from the two fluid model. None the less, the PIV is a useful tool for observing the counterflow field in He II flow, particularly where the flow is complex as occurs through channel constrictions or around bluff objects. The present paper shows recent results using PIV to observe He II counterflow. Two cases are discussed: 1D channel flow and turbulent flow around a circular cylinder.

Towed underwater PIV measurement for free-surface effects on turbulent wake of a surface-piercing body

  • Seol, Dong Myung;Seo, Jeong Hwa;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.404-413
    • /
    • 2013
  • In the present study, a towed underwater particle image velocimetry (PIV) system was validated in uniform flow and used to investigate the free-surface effects on the turbulent wake of a simple surface-piercing body. The selected test model was a cylindrical geometry formed by extruding the Wigley hull's waterplane shape in the vertical direction. Due to the constraints of the two-dimensional (2D) PIV system used for the present study, the velocity field measurements were done separately for the vertical and horizontal planes. Using the measured data at several different locations, it was possible to identify the free-surface effects on the turbulent wake in terms of the mean velocity components and turbulence quantities. In order to provide an accuracy level of the data, uncertainty assessment was done following the International Towing Tank Conference standard procedure.

A Study on the Characteristics of Two-Phase Flow by Driven Bubbles in a Liquid Bath

  • Oh, Yool-Kwon;Seo, Dong-Pyo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.1
    • /
    • pp.44-50
    • /
    • 2005
  • In the present study, the characteristics of upward bubble flow were experimentally investigated in a liquid bath. An electro-conductivity probe was used to measure local volume fraction and bubble frequency. Since the gas was concentrated at the near the nozzle, the flow parameters were high near the nozzle. In general their axial and radial values tended to decrease with increasing distance. For visualization of flow characteristics, a Particle Image Velocimetry (PIV) and a thermo-vision camera were used in the present study. The experimental results showed that heat transfer from bubble surface to water was largely completed within z = 10 mm from the nozzle, and then the temperature of bubble surface reached that of water rapidly. Due to the centrifugal force, the flow was more developed near the wall than at bubble-water plume. Vortex flow in the bottom region was relatively weaker than that in the upper region.

Flow Characteristics of Dual Impinging Jets using PIV (PIV를 이용한 이중 충돌제트의 유동 특성)

  • Kim, Dong-Keon;Kwon, Soon-Hong;Chung, Sung-Won;Park, Jong-Min;Choi, Won-Sik;Kim, Jong-Soon;Kwon, Soon-Goo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.102-108
    • /
    • 2011
  • The flow characteristics of unventilated dual impinging jets were experimentally investigated. Two nozzles with an aspect ratio of 20 were separated by 6 nozzle widths. The Reynolds number based on nozzle width and nozzle exit velocity was set to 5,000. A Particle Image Velocimetry (PIV) was used to measure turbulent velocity components. It was found that, when an impingement plate was installed in the converging region, there was a stagnation region in the inner area between nozzles. However, when it was installed in the combined region, both jets were merged and collided into the plate, showing single-jet characteristics. In addition, at a dual impinging jet, as the distance between a nozzle and an impingement plate decreased, the spanwise turbulent intensity at the plate increased.

In-Cylinder Compression Flow Characteristics of Helical Port Engines with Wide Valve Angle (나선형 포트를 적용한 광각엔진에서 실린더 내 압축 유동 특성)

  • Ohm, In-Yong;Park, Chan-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.9-16
    • /
    • 2009
  • This paper is the second of 2 companion papers which investigate in-cylinder swirl generation characteristics in helical port engine with wide valve angle. Two wide valve-angle engines, which are same ones and have slightly different rig swirl number, were used to compare the characteristics of cylinder-flow. One intake port is deactivated to induce swirl flow. A PIV (Particle Image Velocimetry) was applied to measure in-cylinder velocity field during intake stroke. The results show that the intake flow component passing through valve area near the cylinder wall is not negligible in helical port engine with wide valve angle contrary to conventional one. The effect of this velocity component on in-cylinder increases as the swirl ratio rises and compression process progresses. Consequently, this component destroys in-cylinder swirl flow completely during compression resulting in no actual swirl at the end stage of compression.

An Experimental Study on the Flow Characteristics in Highly Viscous Liquid by Multi-Nozzle Bubbling (고점성 액체 내부에서의 다중 노즐 버블링에 의한 유동특성에 대한 실험적 연구)

  • Kim, Hyun-Dong;Ryu, Seung-Gyu;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.195-201
    • /
    • 2007
  • A visualization study of flow characteristics in a mixer using multi-nozzle bubbling was performed. The mixer is filed with liquid glycerin (dynamic viscosity = $1000mPa{\cdot}s\;at\;25^{\circ}C$) and convective mixing is induced by air bubbles generated from 9 orifices installed on the bottom of the mixer. To visualize the flow field, PIV (Particle Image Velocimetry) system consisting of 532nm Nd:YAG laser, $2k{\times}2k$ CCD camera and synchronizer is adopted. The bubbles generated with uniform size and frequency form bubble stream and bubble streams rise vertically without interaction between bubble streams. Mixing efficiency is affected by the height of bubbler and the effective height of bubbler is 20nm from the bottom of the mixer.