• Title/Summary/Keyword: Particle Image Velocimetry

Search Result 642, Processing Time 0.027 seconds

Behavior of Non-buoyant Round Jet under Waves (파랑수역에서 비부력 원형 제트의 거동)

  • Ryu, Yong-Uk;Lee, Jong-In;Kim, Young-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.596-605
    • /
    • 2007
  • The behavior of a non-buoyant turbulent round jet discharging horizontally was investigated experimentally. The instantaneous velocity field of the jet was obtained using the particle image velocimetry (PIV) method and used to calculate the mean velocity field by phase-averaging. This study tested regular waves with a relatively small wave height for a wavy environmental flow. The centerline and cross-sectional velocity profiles were reported to demonstrate the effect of the waves on the jet diffusion in respect of wave height and wave phase. The wave phase effect was studied for three phases: zero-upcrossing point, zero-downcrossing point, trough. From the results, it is found that the centerline velocity decreases and width of the cross-sectional profile increases as the wave height increases. In addition, the self-similarity of the cross-sectional profile appears to break down although the width of each case along the axial distance does not vary significantly. The phase effect is found to be relatively small compared to the wave height effect.

Runup and Overtopping Velocity due to Wave Breaking (쇄파에 의한 처오름과 월파유속)

  • Ryu, Yong-Uk;Lee, Jong-In;Kim, Young-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.606-613
    • /
    • 2007
  • This study investigates the behavior of a plunging wave and its associated runup and overtopping through velocity measurements and suggests an empirical formula for overtopping velocities on a structure. The plunging wave breaking in front of the structure generates very bubbly flow fields. For measurements of the two phase flow field of the breaking wave, particle image velocimetry and a modified optical method were employed. The obtained velocity fields were discussed in respect of the process of wave impinging, runup and overtopping. The overtopping velocity distribution is found to have a nonlinear profile showing a maximum magnitude at its front part. The relationship of self-similarity among dimensionless parameters is observed and used to obtain the regression formula to depict the overtopping velocity.

Comparison of Swirl Ratio Measured by Impulse Swirl Meter and Particle Image Velocimetry in a Steady Flow Bench of SI Engine (SI 엔진의 정상유동장치에서 충격식 스월미터와 입자영상유속계의 스월비 측정에 대한 비교 연구)

  • Lee, Sukjong;Ohm, In Yong;Sung, Jaeyong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.437-442
    • /
    • 2015
  • The swirl ratio in a SI engine is investigated in a steady flow bench according to the measurement methods: an impulse swirl meter and particle image velocimetry (PIV). When measuring the swirl ratio using the PIV, the torque is evaluated based on the cylinder center and swirl center, respectively. The position of the measurement plane is considered. As a result, in the upstream, the swirl ratio measured by the impulse swirl meter is estimated to be larger than that from the PIV measurements due to the unstable vortex motions. Regarding the PIV measurements, the swirl ratio based on the cylinder center has been found to be lower than that based on the swirl center. On the other hand, the difference in swirl ratio has decreased smaller as the measurement plane moved downstream due to the stabilization of the vortex motion.

Two-dimensional deformation measurement in the centrifuge model test using particle image velocimetry

  • Li, J.C.;Zhu, B.;Ye, X.W.;Liu, T.W.;Chen, Y.M.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.793-802
    • /
    • 2019
  • The centrifuge model test is usually used for two-dimensional deformation and instability study of the soil slopes. As a typical loose slope, the municipal solid waste (MSW) landfill is easy to slide with large deformation, under high water levels or large earthquakes. A series of centrifuge model tests of landfill slide induced by rising water level and earthquake were carried out. The particle image velocimetry (PIV), laser displacement transducer (LDT) and marker tracer (MT) methods were used to measure the deformation of the landfill under different centrifugal accelerations, water levels and earthquake magnitudes. The PIV method realized the observation of continuous deformation of the landfill model, and its results were consistent with those by LDT, which had higher precision than the MT method. The deformation of the landfill was mainly vertically downward and increased linearly with the rising centrifugal acceleration. When the water level rose, the horizontal deformation of the landfill developed gradually due to the seepage, and a global slide surface formed when the critical water level was reached. The seismic deformation of the landfill was mainly vertical at a low water level, but significant horizontal deformation occurred under a high water level. The results of the tests and analyses verified the applicability of PIV in the two-dimensional deformation measurement in the centrifuge model tests of the MSW landfill, and provide an important basis for revealing the instability mechanism of landfills under extreme hydraulic and seismic conditions.

Optical Analysis in Particle Image Processing of Rotating Flow (회전유동의 입자화상처리시 광학적 해석)

  • 김유곤
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.53-65
    • /
    • 1995
  • 입자화상 처리기법은 유체역학 분야의 정량적 유동가시화에 있어서 중요한 역할을 하고 있다. 회전 유동의 측면 사진을 찍을 때, 측정부의 볼록면 때문에 그 영상에서 광학적 변형이 일어나게 된다. 이러한 변형은 측정부의 형상은 물론 회전유동의 방향에 의해서도 큰 영향을 받는다. 정확한 유동장을 얻기 위해서 이러한 변형이 적절한 방법에 의하여 교정된다. 교정한 실험 데이터를 수치해석 결과와 비교해 보면 정량적으로 잘 맞는 것을 알 수 있다.

  • PDF

PIV System for the Flow Pattern Anaysis of Artificial Organs ; Applied to the In Vitro Test of Artificial Heart Valves

  • Lee, Dong-Hyeok;Seh, Soo-Won;An, Hyuk;Min, Byoung-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.489-497
    • /
    • 1994
  • The most serious problems related to the cardiovascular prothesis are thrombosis and hemolysis. It is known that the flow pattern of cardiovascular prostheses is highly correlated with thrombosis and hemolysis. Laser Doppler Anemometry (LDA) is a usual method to get flow pattern, which is difficult to operate and has narrow measure region. Particle Image Velocimetry (PIV) can solve these problems. Because the flow speed of valve is too high to catch particles by CCD camera, high-speed camera (Hyspeed : Holland-Photonics) was used. The estimated maximum flow speed was 5m/sec and maximum trackable length is 0.5 cm, so the shutter speed was determined as 1000 frames per sec. Several image processing techniques (blurring, segmentation, morphology, etc) were used for the preprocessing. Particle tracking algorithm and 2-D interpolation technique which were necessary in making gridrized velocity pronto, were applied to this PIV program. By using Single-Pulse Multi-Frame particle tracking algorithm, some problems of PIV can be solved. To eliminate particles which penetrate the sheeted plane and to determine the direction of particle paths are these solving methods. 1-D relaxation fomula is modified to interpolate 2-D field. Parachute artificial heart valve which was developed by Seoul National University and Bjork-Shiely valve was testified. For each valve, different flow pattern, velocity profile, wall shear stress and mean velocity were obtained.

  • PDF

Effect of Particle Size and Velocity Ratio on the Flow Mixing Characteristics in the Secondary Combustor (덕티드 로켓의 이차 연소기 내에서 입자의 크기와 속도비가 유동 혼합에 미치는 영향)

  • Park, Jung Shin;Park, Soon Sang;Han, Doo-Hee;Shin, Jun-Su;Sung, Hong-Gye;Kwak, Jae Su;Choi, Ho-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • In this study, the effect of velocity ratio and particle size on the flow mixing characteristics in the secondary combustor was investigated. Both PIV(Particle Image Velocimetry) technique and LES(Large Eddy Simulation) were applied. Two sizes of Polystyrene PIV seeding particle of 5 and $50{\mu}m$, and three velocity ratios of 5, 3, and 1.5 were considered. Results showed that the mixing of two air streams created reattachment and recirculation regions. The size of the recirculation region was decreased as the velocity ratio increased. For the larger particle cases, due to the increased momentum by the larger particles, the size of the recirculating regions were larger than that of the smaller particle cases and the effect of the velocity ratio was not as significant as in the smaller particle case.

Velocity Field Masking Technique for Coastal Engineering Experiments

  • Adibhusana, Made Narayana;Ryu, Yong-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.154-154
    • /
    • 2021
  • Since the development of Bubble Image Velocimetry (BIV) technique as the complementary technique of Particle Image Velocimetry (PIV), the application of digital imaging technique in the field of hydraulic and coastal engineering increased rapidly. BIV works very well in multi-phase flow (air-water) flows where the PIV technique doesn't. However, the velocity field obtained from BIV technique often resulted in a velocity vector on the outside of the flow (false velocity) since the Field of View (FOV) usually not only cover the air-water flow but also the area outside the flow. In this study, a simple technique of post processing velocity field was developed. This technique works based on the average of the pixel value in the interrogation area. An image of multi-phase flow of wave overtopping was obtained through physical experiment using BIV technique. The velocity calculation was performed based on the similar method in PIV. A velocity masking technique developed in this study then applied to remove the false velocity vector. Result from non-masking, manually removed and auto removed false velocity vector were presented. The masking technique show a similar result as manually removed velocity vector. This method could apply in a large number of velocity field which is could increase the velocity map post-processing time.

  • PDF

Failure pattern of twin strip footings on geo-reinforced sand: Experimental and numerical study

  • Mahmoud Ghazavi;Marzieh Norouzi;Pezhman Fazeli Dehkordi
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.653-671
    • /
    • 2023
  • In practice, the interference influence caused by adjacent footings of structures on geo-reinforced loose soil has a considerable impact on their behavior. Thus, the goal of this study is to evaluate the behavior of two strip footings in close proximity on both geocell and geogrid reinforced soil with different reinforcement layers. Geocell was made from geogrid material used to compare the performance of cellular and planar reinforcement on the bearing pressure of twin footings. Extensive experimental tests have been performed to attain the optimum embedment depth and vertical distance between reinforcement layers. Particle image velocimetry (PIV) analysis has been conducted to monitor the deformation, tilting and movement of soil particles beneath and between twin footings. Results of tests and PIV technique were verified using finite element modeling (FEM) and the results of both PIV and FEM were used to utilize failure mechanisms and influenced shear strain around the loading region. The results show that the performance of twin footings on geocell-reinforced sand at allowable and ultimate settlement ranges are almost 4% and 25% greater than the same twin footings on the same geogrid-reinforced sand, respectively. By increasing the distance between twin footings, soil particle displacements become smaller than the settlement of the foundations.

Visualization of Turbulent Flow Fields Around a Circular Cylinder at Reynolds Number 1.4×105 Using PIV

  • Jun-Hee Lee;Bu-Geun Paik;Seok-Kyu Cho;Jae-Hwan Jung
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.137-144
    • /
    • 2023
  • This study investigates the experimental parameters of particle image velocimetry (PIV) to enhance the measurement technique for turbulent flow fields around a circular cylinder at a Reynolds number (Re) of 1.4×105. At the Korea Research Institute of Ships & Ocean Engineering (KRISO), we utilized the cavitation tunnel and PIV system to capture the instantaneous flow fields and statistically obtained the mean flow fields. An aspect ratio and blockage ratio of 16.7% and 6.0%, respectively, were considered to minimize the tunnel wall effect on the cylinder wakes. The optimal values of the pulse time and the number of flow fields were determined by comparing the contours of mean streamlines, velocities, Reynolds shear stresses, and turbulent kinetic energy under their different values to ensure accurate and converged results. Based on the findings, we recommend a pulse time of 45 ㎲ corresponding to a particle moving time of 3-4 pixels, and at least 3,000 instantaneous flow fields to accurately obtain the mean flow fields. The results of the present study agree well with those of previous studies that examined the end of the subcritical flow regime.