• Title/Summary/Keyword: Partial load

Search Result 555, Processing Time 0.028 seconds

A Cache-Conscious Compression Index Based on the Level of Compression Locality (압축 지역성 수준에 기반한 캐쉬 인식 압축 색인)

  • Kim, Won-Sik;Yoo, Jae-Jun;Lee, Jin-Soo;Han, Wook-Shin
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1023-1043
    • /
    • 2010
  • As main memory get cheaper, it becomes increasingly affordable to load entire index of DBMS and to access the index. Since speed gap between CPU and main memory is growing bigger, many researches to reduce a cost of main memory access are under the progress. As one of those, cache conscious trees can reduce the cost of main memory access. Since cache conscious trees reduce the number of cache miss by compressing data in node, cache conscious trees can reduce the cost of main memory. Existing cache conscious trees use only fixed one compression technique without consideration of properties of data in node. First, this paper proposes the DC-tree that uses various compression techniques and change data layout in a node according to properties of data in order to reduce cache miss. Second, this paper proposes the level of compression locality that describes properties of data in node by formula. Third, this paper proposes Forced Partial Decomposition (FPD) that reduces the nutter of cache miss. DC-trees outperform 1.7X than B+-tree, 1.5X than simple prefix B+-tree, and 1.3X than pkB-tree, in terms of the number of cache misses. Since proposed DC-trees can be adopted in commercial main memory database system, we believe that DC-trees are practical result.

Comparison of removal efficiency of diesel particulate filter with different measurement methods in a high-speed marine diesel engine (선박용 고속 디젤엔진에 적용한 디젤미립자 필터의 측정방법에 따른 입자상물질 저감효율 비교 연구)

  • Lee, Ik-Sung;Ko, Dong-Kyun;Moon, Gun-Feel;Nam, Youn-Woo;Kim, Shin-Han;Oh, Young-Taig
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.362-367
    • /
    • 2017
  • This study was conducted to compare the particulate removal efficiency of the developed diesel particulate filter using various measurement methods in a high-speed marine diesel engine. A four-stroke mechanical marine diesel engine is used for the test, which has a maximum output of 403 kW and is coupled to an AC dynamometer to control engine speed and load. The test was conducted based on four steady-state engine operating conditions of E3 engine test cycle for the measurement of PM and soot removal efficiency using partial dilution method considered as gravimetric method and filter smoke number method as light absorption method, respectively. As a result of the removal efficiency measurement according to the application of diesel particulate filter, particulate matter was reduced from 76% to 91% and the soot was reduced by more than 90% while meeting the permissible engine back pressure. From these results, the applicability of diesel particulate filter adopted in high-speed marine diesel engines could be confirmed. In addition, based on the result that the particulate removal efficiency varies with different measurement methods, the necessity of unification of these methods could be identified.

Wet Oxidation of Phenol with Homogeneous Catalysts (균일촉매를 이용한 페놀의 습식산화)

  • Suh, Il-Soon;Ryu, Sung Hun;Yoon, Wang-Lai
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.292-302
    • /
    • 2009
  • The wet oxidation of phenol has been investigated at temperatures from 150 to $250^{\circ}C$ and oxygen partial pressures from 25.8 to 75.0 bar with initial pH of 1.0 to 12.0 and initial phenol concentration of 10 g/l. Chemical Oxygen Demand COD has bee measured to estimate the oxidation rate. Reaction intermediates have been identified and their concentration profiles have been determined using liquid chromatography. The destruction rate of phenol have shown the first-order kinetics with respect to phenol and the changes in COD during wet oxidation have been described well with the lumped model. The impact of various homogeneous catalysts, such as $Cu^{2+}$, $Fe^{2+}$, $Zn^{2+}$, $Co^{2+}$ and $Ce^{3+}$ ions, on the destruction rate of phenol and COD has also been studied. The homogeneous catalyst of $CuSO_4$ has been found to be the most effective for the destruction of phenol and COD during wet oxidations. The destruction rate of formic acid formed during wet oxidations of phenol have increased as increasing temperature and $CuSO_4$ concentration. The final concentrations of acetic acid which has been formed during wet oxidations and difficult to oxidize have increased with reaction temperature and with decrease in the catalyst load.

Durability Evaluation on the Air-Braking Release Failure Proof Valve of Cargo Train (화물열차 공기제동 완해불량 방지 밸브의 내구성 평가)

  • Lee, Jun-Ku;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.32-38
    • /
    • 2020
  • Cargo train braking uses the pressure changes in the air braking pipe to operate the braking tightening and releasing service repeatedly. Air-braking release failure means partial braking caused by a failure of the variable load valve after the driver handling the brake release. This phenomenon causes wheel flaws while driving a wagon, resulting in wheel breakage or train derailment. This study developed the air-braking release failure proof valve considering the technical requirements of the railway operation corporations. In addition, a durability test of the valve was carried out using a braking performance simulator, and its operating performance was evaluated from the pneumatic history under cyclic braking conditions. The warranty life of this valve was assessed by performing 160,000 cycles of testing of 12 prototypes in accordance with the zero-failure test method, considering the number of braking cycles while driving the wagon. During the durability test, the pneumatic input time, output time, and release velocity were almost constant. The warranty life of this valve was 59,860 times the 95% confidence level, which means that it can be operated without trouble for four years when the valve is installed in the bogie of the wagon.

A Study on the Experiment of Represtressed Preflexional Composite Beams (RPF 합성보의 실험 연구)

  • Chang, Dong Il;Hwang, Yoon Kook;Kim, Jung Ho;Cho, Tae Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.697-705
    • /
    • 1997
  • The conventional preflex beams are designed by the method of paritial prestressing and allow the tensile stresses at the lower concrete of beams. As a consequence, most of preflex beams experience the tensile cracks under the service loads. This study was conducted to develop the most effective preflex beams, which do not allow tensile stress under the service load, by introducing additional prestressing called 'represtressing' at the lower concrete of beams. The objective of the study was accomplished by developing a computer analysis and design program and conducting experiments. Using the developed computer program, standard sections of the represtressed preflex beams were determined by computer modeling. In the experiment, two actual size of represtressed beams were tested under the imitated service loads. The results of test have shown that the performance of the represtressed preflex beams is generally excellent. A remarkable improvement was made in the design of preflex composite beams. Since the represtressed preflex beams(RPF) do not experience the tensile cracks under the service loads, the use of this beam for the bridge structures will lead to easy bridge maintenance and management. Furthermore, due to the low beam depth, high clearance and economical design can be realized in the bridge design using RPF.

  • PDF

Evaluation of Seismic Behavior for RC Moment Resisting Frame with Masonry Infill Walls (비내력벽을 가진 RC모멘트저항골조의 지진거동 평가)

  • Ko, Hyun;Kim, Hyun-Su;Park, Yong-Koo;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.13-22
    • /
    • 2010
  • Masonry infill walls are frequently used as interior partitions and exterior walls in low- or middle- rise RC buildings. In the design and assessment of buildings, the infill walls are usually treated as non-structural elements and they are ignored in analytical models because they are assumed to be beneficial to the structural responses. Therefore, their influences on the structural response are ignored. In the case of buildings constructed in the USA in highly seismic regions, infill walls have a lower strength and stiffness than the boundary frames or they are separated from the boundary frames. Thus, the previously mentioned assumptions may be reasonable. However, these systems are not usually employed in most other countries. Therefore, the differences in the seismic behaviors of RC buildings with/without masonry infill walls, which are ignored in structural design, need to be investigated. In this study, structural analyses were performed for a masonry infilled low-rise RC moment-resisting frame. The infill walls were modeled as equivalent diagonal struts. The seismic behaviors of the RC moment-resisting frame with/without masonry infill walls were evaluated. From the analytical results, masonry infill walls can increase the global strength and stiffness of a structure. Consequently, the interstory drift ratio will decrease but seismic forces applied to the structure will increase more than the design seismic load because the natural period of the structure decreases. Partial damage of the infill walls by the floor causes vertical irregularity of the strength and stiffness.

Out-of-Plane Buckling Analysis of Curved Beams Considering Rotatory Inertia Using DQM (미분구적법(DQM)을 이용 회전관성을 고려한 곡선 보의 외평면 좌굴해석)

  • Kang, Ki-jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.300-309
    • /
    • 2016
  • Curved beams are increasingly used in buildings, vehicles, ships, and aircraft, which has resulted in considerable effort towards developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic curved beams has been the subject of many investigations. Solutions to the relevant differential equations have traditionally been obtained by the standard finite difference or finite element methods. However, these techniques require a great deal of computer time for a large number of discrete nodes with conditions of complex geometry and loading. One efficient procedure for the solution of partial differential equations is the differential quadrature method (DQM). This method has been applied to many cases to overcome the difficulties of complex algorithms and high storage requirements for complex geometry and loading conditions. Out-of-plane buckling of curved beams with rotatory inertia were analyzed using DQM under uniformly distributed radial loads. Critical loads were calculated for the member with various parameter ratios, boundary conditions, and opening angles. The results were compared with exact results from other methods for available cases. The DQM used only a limited number of grid points and shows very good agreement with the exact results (less than 0.3% error). New results according to diverse variation are also suggested, which show important roles in the buckling behavior of curved beams and can be used for comparisons with other numerical solutions or experimental test data.

A Numerical Study on Structural Safety Evaluation of Railway Bridges Deformed due to External Impact Loads (외부 충돌하중으로 변형된 철도 교량의 구조적 안전성 평가에 관한 수치 해석적 연구)

  • Dong-Woo Seo;Kyu-San Jung;Sangki Park;Jung-Hyun Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.2
    • /
    • pp.75-83
    • /
    • 2023
  • In general, bridges are facilities installed for the purpose of easily passing through sections such as valleys and rivers. Railway bridges that run through downtown areas are damaged due to external factors such as earthquakes and collisions with passing vehicles, resulting in serious human casualties. This can cause serious human and properties damage, such as functional paralysis in downtown areas. Depending on the degree of damage, repair work such as partial repair or full replacement is in progress for the bridge where the collision occurred. When damage or deformation occurs due to collision, the repair method is determined according to the degree of deformation and the degree to which the load capacity of the bridge is affected by the deformation. In this study, a numerical analysis review was performed on the repair work for the local deformation caused by the collision of a vehicle on an old railway bridge installed and in operation in an urban area. To this end, a structural safety review of the bridge for local deformations caused by vehicle collisions was conducted. In this paper, a repair method for the accident bridge was presented based on the analysis results.

Evaluation of Maneuverability of Small Fishing Vessels Based on CFD Simulation under Standard Loading Condition (CFD 시뮬레이션 기반 소형 어선의 표준재화상태에 따른 조종성능 평가)

  • Sun woo Lee;Sang hyun Kim;Hye woo Kim;Hyung seok Yoon;Chang woo Song;Joo hyung Oh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.4
    • /
    • pp.348-357
    • /
    • 2024
  • Maneuvering performance is crucial for fishing vessels, especially under operational conditions that involve frequent course changes and weight variations due to catch. Small vessel accidents account for approximately 60% of maritime incidents as of 2022, mainly attributed to collisions and stranding accidents due to insufficient maneuvering performance. Especially, accidents that occur on small vessels less than 10 tons account for about 65% of all accidents. The absence of international standards presents challenges in accurately evaluating the maneuvering performance of small vessels. In this study, a 4.99-ton small fishing vessel was selected as the target, and a 3d-cad model was created. The commercial numerical analysis program STAR-CCM+ was employed to establish a simulation environment for the vessel's maneuvring motion. Based on this standard loading conditions and weight distribution were considered, 10° / 10°, 20° / 20° zigzag tests and 35° turning test were conducted. The results revealed a tendency for decreased yaw and course-keeping performance and improved turning performance as the hull weight increased. However, in partial arrival and full load departure condition, the manoeuvering performance were relatively poor. Based on this, the need for evaluation of maneuvering and standardized criteria of maneuvering performance for safe navigation of small vessels is presented. Furthermore, it is expected that the evaluation results of maneuvering performance in this study can serve as fundamental data for establishing criteria for evaluating the maneuvering performance of small vessels.

Analysis of Structural Safety of the Welded Pipe Columns Adopted in Paprika Greenhouse (파프리카 재배용 온실에서 용접 파이프 기둥재의 구조적 안전성 검토)

  • Suh, Won-Myung;Choi, Man-Kwon;Im, Jae-Un;Kwon, Sun-Ju;Kim, Hyeon-Tae;Kim, Young-Ju;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.45 no.2
    • /
    • pp.125-133
    • /
    • 2011
  • This study was conducted on greenhouses whose side heights had been raised after the columns of 1-2W basic type greenhouses had been cut and welding with the same-sized pipes. When the wind load or snow load affects restructured pipe greenhouse like this, those parts will be structurally unsafe. To examine this, the bending strength of welded columns were measured through four stages and compared with the pipes in their original condition. Results are as follows. In the case of a bending test on welded joints about steel pipes used for greenhouses, satisfactory results couldn't be drawn because sections of both ends and the loading parts couldn't endure loads and sank regardless of loading methods. Partial problems could be solved by inserting inside pipe(steel bar) at the sections and the loading parts, but it was necessary to devise more satisfactory bending test methods. The strength of welded joints wasn't much different compared with original conditions and demonstrated only slight differences according to the sample production conditions. However, significant incompleteness in the welding process was expected to cause a decisive loss in strength. On the assumption that there were no problems in the welding process or with regard to the inclination of sub materials for columns after connection, it was deemed reasonable to assume that the strength of welded pipes was about 84~90% of the strength of the pipes in their original condition. Considering mid- and long-term strength decline following the onset of rust at joints or welding sections, structural changes in the main sub materials that are used for greenhouses at farmhouses have to be avoided to ensure structural safety, unless these changes are inevitable.