• Title/Summary/Keyword: Partial electrical conductivity

검색결과 113건 처리시간 0.024초

산화이트륨의 결함구조 및 전기전도 메카니즘 (Defect Structure and Electrical Conduction Mechanism of Yttrium Sesquioxide)

  • 김규홍;박성호;최재시
    • 대한화학회지
    • /
    • 제28권3호
    • /
    • pp.149-154
    • /
    • 1984
  • 산화이트륨의 전기전도도를 $1 {\times}10^{-5}{\sim}2 {\times}10^{-1}$atm의 산소분압과 $650{\sim}1050^{\circ}$C 의 온도에서 산소분압 및 온도의 함수로 측정하였다. 일정한 산소분압에서 측정된 전기전도도 값을 온도의 역수에 대하여 도시한 결과, 온도 의존성이 적은 영역과 큰 영역이 나타났으며, 온도 의존성이 큰 영역은 두 개의 각기 다른 결함구조를 보여주었다. 전기전도도의 산소분압 의존성은 $850{\sim}950^{\circ}C$ 에서 ${{\sigma}{\propto}Po_2}^{1/6},\;950{\sim}1050^{\circ}C$ 에서 ${{\sigma}{\propto}Po_2}^{3/16}$이며 $650{\sim}800^{\circ}C$에서 ${{\sigma}{\propto}Po_2}^{1/7.5}{\sim}{{\sigma}{\propto}Po_2}^{1/8.3}$이다. ${{\sigma}{\propto}Po_2}^{1/6}$인 영역에서의 detect는 $O_i{''}$${{\sigma}{\propto}Po_2}^{3/16}$인 영역에서의 detect는 $V_M{'''}$이다. 고온영역에서의 carrier type은 electron hole이며 저온영역에서는 이온성의 기여도가 있다.

  • PDF

스퍼터링으로 증착된 바나듐 산화막의 구조적, 광학적, 전기적 특성에 미치는 산소 분압의 효과 (Effect of Oxygen Partial Pressure on the Structural, Optical and Electrical Properties of Sputter-deposited Vanadium Oxide Thin Films)

  • 최복길;최창규;권광호;김성진;이규대
    • 한국전기전자재료학회논문지
    • /
    • 제14권12호
    • /
    • pp.1008-1015
    • /
    • 2001
  • Thin films of vanadium oxide(VO$\_$x/) have been deposited by r.f. magnetron sputtering from V$_2$O$\_$5/ target in gas mixture of argon and oxygen. The oxygen/(oxygen+argon) partial pressure ratio is changed from 0% to 8%. Crystal structure, chemical composition, bonding, optical and electrical properties of films sputter-deposited under different oxygen gas pressures are characterized through XPS, AES, RBS, FTIR, optical absorption and electrical conductivity measurements. V$_2$O$\_$5/ and lower oxides co-exist in sputter-deposited films and as the oxygen partial pressure is increased the films become more stoichiometric V$_2$O$\_$5/. The increase of O/V ratio with increasing oxygen gas pressure is attributed to the partial filling of oxygen vacancies through diffusion. It is observed that the oxygen atoms located on the V-O plane of V$_2$O$\_$5/ layer participate more readily in the oxidation process. With increasing oxygen gas pressure indirect and direct optical band gaps are increased, but thermal activation energies are decreased.

  • PDF

In-situ spectroscopic studies of SOFC cathode materials

  • 주종훈
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.70.1-70.1
    • /
    • 2012
  • In-situ X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies of SOFC cathode materials will be discussed in this presentation. The mixed conducting perovskites (ABO3) containing rare and alkaline earth metals on the A-site and a transition metal on the B-site are commonly used as cathodes for solid oxide fuel cells (SOFC). However, the details of the oxygen reduction reaction are still not clearly understood. The information about the type of adsorbed oxygen species and their concentration is important for a mechanistic understanding of the oxygen incorporation into these cathode materials. XPS has been widely used for the analysis of adsorbed species and surface structure. However, the conventional XPS experiments have the severe drawback to operate at room temperature and with the sample under ultrahigh vacuum (UHV) conditions, which is far from the relevant conditions of SOFC operation. The disadvantages of conventional XPS can be overcome to a large extent with a "high pressure" XPS setup installed at the BESSY II synchrotron. It allows sample depth profiling over 2 nm without sputtering by variation of the excitation energy, and most importantly measurements under a residual gas pressure in the mbar range. It is also well known that the catalytic activity for the oxygen reduction is very sensitive to their electrical conductivity and oxygen nonstoichiometry. Although the electrical conductivity of perovskite oxides has been intensively studied as a function of temperature or oxygen partial pressure (Po2), in-situ measurements of the conductivity of these materials in contact with the electrolyte as a SOFC configuration have little been reported. In order to measure the in-plane conductivity of an electrode film on the electrolyte, a substrate with high resistance is required for excluding the leakage current of the substrate. It is also hardly possible to measure the conductivity of cracked thin film by electrical methods. In this study, we report the electrical conductivity of perovskite $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ (LSC) thin films on yttria-stabilized zirconia (YSZ) electrolyte quantitatively obtained by in-situ IR spectroscopy. This method enables a reliable measurement of the electronic conductivity of the electrodes as part of the SOFC configuration regardless of leakage current to the substrate and cracks in the film.

  • PDF

CaO에 의하여 부분 안정화된 $ZrO_2$의 고온 전기 전도도에 대한 연구 (Investigation of High Temperature Electrical Conductivity of CaO-partially Stabilized $ZrO_2$)

  • 변수일
    • 한국세라믹학회지
    • /
    • 제16권4호
    • /
    • pp.213-224
    • /
    • 1979
  • The present work was undertaken: (1) to determine if CaO-partially stabilized $ZrO_2$ prepared by Hot Petroleum Drying Method would show better ionic conductor as an oxygen sensor in molten metals than that prepared by Oxide Wet Mixing Method and than CaO-fully stabilized $ZrO_2$, and (2) to understand the nature of conduction mechanism of CaO-partially stabilized $ZrO_2$ by a comparison of measured electrical conductivity data with theory on defect structure of pure monoclinic $ZrO_2$ and fully stabilized cubic $ZrO_2$. The DC electrical conductivity was measured by 3-probe technique and the AC electrical conductivity by 2-probe technique as a function of temperature in the range 973-1373 K and oxygen partial pressure in the range 10-1-10-25Mpa. The results of the experiments were as follows: 1. CaO-partially stabilized $ZrO_2$ prepared by Hot petroleum Drying Method showed at T=1094-1285 K and $Po_2$=10-7-10-25 MPa a nearly ionic conduction with 4 times higher conductivity than that prepared by Oxide Wet Mixing Method. 2. High-oxygen pressure conductivity tends toward a Po_2^{+1/5}-Po_2^{+1/6}$dependence. An analysis of possible defect structures suggests that CaO-partially stabilized $ZrO_2$ has an anti-Frenkel defect in which singly or doubly ionized oxygen interstitials and defect electrons predominate at T=1094-1285 K and $Po_2$=10-1-10-7MPa. 3. The activation energy for pure electron hole-conduction and ionic conduction of CaO-partially stabilized $ZrO_2$ was found to be 130 KJ/mol at T=973-1373 K, $Po_2$=2, 127 10-2 MPa(air) and 153KJ/mol at T=1094-1285 K respectively.

  • PDF

Fabrication of YSZ/GDC Bilayer Electrolyte Thin Film for Solid Oxide Fuel Cells

  • Yang, Seon-Ho;Choi, Hyung-Wook
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권4호
    • /
    • pp.189-192
    • /
    • 2014
  • Yttria-stablized zirconia (YSZ) is the most commonly used electrolyte material, but the reduction in working temperature leads to insufficient ionic conductivity. Ceria based electrolytes (GDC) are more attractive in terms of conductivity at low temperature, but these materials are well known to be reducible at very low oxygen partial pressure. The reduction of electrolyte resistivity is necessary to overcome cell performance losses. So, thin YSZ/GDC bilayer technology seems suitable for decreasing the electrolyte resistance at lower operating temperatures. Bilayer electrolytes composed of a galdolinium-doped $CeO_2$ ($Ce_{0.9}Gd_{0.1}O_{1.95}$, GDC) layer and yttria-stabilized $ZrO_2$ (YSZ) layer with various thicknesses were deposited by RF sputtering and E-beam evaporation. The bilayer electrolytes were deposited between porous Ni-GDC anode and LSM cathode for anode-supported single cells. Thin film structure and surface morphology were investigated by X-ray diffraction (XRD), using $CuK{\alpha}$-radiation in the range of 2ce morphol$^{\circ}C$. The XRD patterns exhibit a well-formed cubic fluorite structure, and sharp lines of XRD peaks can be observed, which indicate a single solid solution. The morphology and size of the prepared particles were investigated by field-emission scanning electron microscopy (FE-SEM). The performance of the cells was evaluated over $500{\sim}800^{\circ}C$, using humidified hydrogen as fuel, and air as oxidant.

THE FAULTY RESISTOR PROBLEMS AND THE INVERSE SOURCE PROBLEMS FOR RECTANGULAR ELECTRICAL NETWORKS

  • Mun, Young-Hun
    • 대한수학회논문집
    • /
    • 제24권3호
    • /
    • pp.467-479
    • /
    • 2009
  • This paper ultimately aims to develop noninvasive techniques to identify the inside of a given electrical network. Based on the theory of the partial differentiation equations and mathematical modeling, this paper devises the algorithms to find the locations of possible abnormalities. To ensure the certainty of the algorithms, this study restricted the forms of the network and the number of abnormalities, rendering it easy to prove the uniqueness of the position of the abnormalities.

$(Mg_{0.29}-yMnyFe_{0.71})_{3-}\delta$O_4$ 훼라이트계의 상평형 (Phase Equilibria of the Ferrous Ferrite System of $(Mg_{0.29}-yMnyFe_{0.71})_{3-}\delta$O_4$)

  • 채정훈;유한일;강선호;강대석;유병두
    • 한국세라믹학회지
    • /
    • 제32권3호
    • /
    • pp.394-402
    • /
    • 1995
  • Electrical conductivity and thermoelectric power of the ferrous ferrite system of (Mg0.29-yMnyFe0.71)3-$\delta$O4 have been measured as function of the thermodynamic variables, cationic composition(y), temperature(T) and oxygen partial pressure(Po2) under thermodynamic equilibrium conditions at elevated temperatures. On the basis of the electrical properties-phase stability correlation, the stability regions of the ferrite spinel and its neighboring phases have been subsequently located in the log Po2 vs. y and log Po2 vs. 1/T planes in the ranges of 0 y 0.29, 1100 T/$^{\circ}C$ 1400 and 10-14 Po2/atm 1. The stability region, Δlog Po2(y, 1/T), of the ferrite spinel single phase widens with increasing Mn-content(y) and the boundaries of each region are linear against 1/T with negative slopes.

  • PDF

RF-Magnetron Sputtering 방법을 이용해 질소분압비에 따른 금속 PCB용 AlN 절연막의 특성 (Characteristics of AlN Dielectric Layer for Metal PCB as a Function of Nitrogen Partial Pressure Using RF-Magnetron Sputtering Method)

  • 김화민;박정식;김동영;배강;손선영
    • 한국전기전자재료학회논문지
    • /
    • 제23권10호
    • /
    • pp.759-762
    • /
    • 2010
  • In this investigation, the effects of $N_2/(Ar+N_2)$ gas partial pressure on the structural, electrical, and thermal properties of AlN dielectric layers prepared on aluminum substrates using RF-magnetron sputtering method were analyzed. Among the films, the AlN dielectric film deposited under $N_2/(Ar+N_2)$ gas partial pressure of 75% exhibit the highest AlN (002) preferred orientation, which was grain size of about 15.32 nm and very dense structure. We suggest the possibilities of it's application as a dielectric layer for metal PCB because the AlN films prepared at optimized gas partial pressure can improving the insulating property, the thermal conductivity, and thermal diffusivity of the films.

콘크리트 구조의 재료 물성 재구성을 위한 전기 임피던스 단층촬영 기법 (Electrical Impedance Tomography for Material Profile Reconstruction of Concrete Structures)

  • 정봉구;김보영;강준원;황진하
    • 한국전산구조공학회논문집
    • /
    • 제32권4호
    • /
    • pp.249-256
    • /
    • 2019
  • 이 논문은 재료의 전기 전도도 분포를 재구성하는 전기임피던스 단층이미지 기법(electrical impedance tomography; EIT)을 제시한다. 이 문제는 구조물 표면의 전극에서 측정된 전위와 계산된 전위의 차를 최소화하여 전기 전도도의 공간적 분포를 재구성하는 최적화 문제로 정의된다. 전류 입력 시 전위를 구하는 정해석 문제의 수학적 모델로서 완전전극모델(complete electrode model; CEM)을 사용하였다. 완전전극모델은 전기 포텐셜에 대한 라플라스 방정식과 전류 입력에 따른 경계조건들로 구성되는 경계값 문제이다. 완전전극모델 해의 정확성을 검증하기 위하여 유한요소법을 이용해 구한 원형 구조물의 전위해와 Technology Computer Aided Design(TCAD) 소프트웨어를 사용해 얻은 결과를 비교하였다. 완전전극모델의 지배방정식과 경계조건을 구속조건으로 하는 최적화 문제를 라그랑주 승수법(lagrange multiplier method)을 이용해 비구속 최적화 문제로 전환하고 라그랑지안의 1차 최적화 조건으로부터 전극에서의 전위 차를 최소화하는 최적의 전기전도도 분포를 도출하였다. 원형 균일영역의 전기 전도도 분포를 재구성하는 역해석 예제를 통해 완전전극모델 기반 EIT 프레임워크의 적용성을 검토하였다.

[(ZrO2)$_{1-x}$(CeO2)$_x$$_{0.92}$(Y$_2$O$_3$)$_{0.08}$ 고용체의 전기전도도 (Electrical Conductivities of [(ZrO2)$_{1-x}$(CeO2)$_x$]$_{0.92}$(Y$_2$O$_3$)$_{0.08}$ Solid Solution)

  • 이창호;최경만
    • 한국세라믹학회지
    • /
    • 제35권12호
    • /
    • pp.1323-1328
    • /
    • 1998
  • The electrical conductivities of the yttria (8mol%) stabilizedzirconia-ceria solid solutions were measured as a function of oxygen partial between 80$0^{\circ}C$ and 100$0^{\circ}C$ using 4-probe d.c. method Under pure oxygen atmosphere the oxygen ionic conductivity of CeO2-ZrO2 decreased with the concentration of CeO2 Under reducing condition electronic conduction due to the redox equilibrium of Ce ion was observed. Total ionic and electronic conductivities fitted by a defect model enabled to determine the electronic transference number(tei) which increased with the concentration of CeO2 and with the degree of reduction.

  • PDF