• Title/Summary/Keyword: Partial discharge %28PD%29

Search Result 2, Processing Time 0.018 seconds

Analysis of Partial Discharge Characteristics in SF6 Gas Insulation (SF6 가스절연에서 부분방전의 특성분석)

  • Kim, Sun-Jae;Wang, Guoming;Park, Seo-Jun;Kil, Gyung-Suk;An, Chang-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.429-434
    • /
    • 2016
  • This paper deals with the characteristics of partial discharge (PD) for the purpose of a condition based maintenance (CBM) of gas insulated switchgears (GIS) in power equipment. Four types of electrode systems such as a protrusion on enclosure (POE), a particle on spacer (POS), a free particle (FP) and a Floating were designed and fabricated. PD pulses were measured using UHF sensor with a frequency range of 300 MHz~1.4 GHz and a DAQ with a sampling rate of 250 MS/s. Discharge inception voltage (DIV), discharge extinction voltage (DEV), and phase resolved partial discharge (PRPD) were analyzed depending on electrode systems. The average DIV in the POS was 28.8 kV. It was about 1.7 times higher than that in the FP, which was the lowest value of 17.2 kV. The FP shuffled and jumped at the applied voltage of 23.5 kV. Over 95% of PD pulses in the POE were generated in the negative polarity ($181^{\circ}{\sim}360^{\circ}$) of applied voltage. The results showed the phase (${\Phi}$)-magnitude (dBm) of PD pulses by UHF sensor, a cluster was formed separately depending on electrode systems.

Analysis of Insulation Diagnosis and Failure in Stator Windings of Air-Cooled Gas Turbine Generator

  • Kim, Hee-Dong;Kong, Tae-Sik;Kim, Kyeong-Yeol
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.421-424
    • /
    • 2016
  • In order to evaluate the insulation deterioration in the stator windings of air-cooled gas turbine generators(119.2 MVA, 13.8 kV) which has been operating for more than 15 years, diagnostic test and AC dielectric breakdown test were performed on phases A, B and C. Diagnostic test included measurements of AC current, dissipation factor, partial discharge (PD) magnitude and capacitance. ${\Delta}I$ and ${\Delta}tan{\delta}$ in all three phases (A, B, and C) of generator stator windings showed that they were in good condition but PD magnitude indicated marginally serviceable condition. After the diagnostic test, an AC overvoltage test was performed by gradually increasing the voltage applied to the generator stator windings until electrical insulation failure occurred, in order to determine the breakdown voltage. Although phase A of generator stator windings failed at breakdown voltage of 29.0 kV, phases B and C endured the 29.0 kV. The breakdown voltage in all three phases was higher than that expected for good-quality windings (28.6 kV) in a 13.8 kV class generator.