• Title/Summary/Keyword: Partial Slip

Search Result 103, Processing Time 0.622 seconds

Bond-slip effect in steel-concrete composite flexural members: Part 1 - Simplified numerical model

  • Lee, WonHo;Kwak, Hyo-Gyoung;Hwang, Ju-young
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.537-548
    • /
    • 2019
  • This paper introduces an improved numerical model which can consider the bond-slip effect in steel-concrete composite structures without taking double nodes to minimize the complexity in constructing a finite element model. On the basis of a linear partial interaction theory and the use of the bond link element, the slip behavior is defined and the equivalent modulus of elasticity and yield strength for steel is derived. A solution procedure to evaluate the slip behavior along the interface of the composite flexural members is also proposed. After constructing the transfer matrix relation at an element level, successive application of the constructed relation is conducted from the first element to the last element with the compatibility condition and equilibrium equations at each node. Finally, correlation studies between numerical results and experimental data are conducted with the objective of establishing the validity of the proposed numerical model.

An experimental study on the fretting fatigue crack behaviour of A12024-T4 (A12024-T4의 프레팅 피로균열거동에 관한 실험적 연구)

  • Lee, Bong-Hun;Lee, Sun-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.511-518
    • /
    • 1997
  • The technique of fretting fatigue test was developed and fretting fatigue tests of A12024-T4 were conducted under several conditions. The newly developed calibration methods for measuring surface contact tractions showed good linearity and repeatability. The plate type specimen to which tow bridge type pads were attached and vision system was used to observe the crack behaviour. The oblieque cracks appeared in the early stage of crack growth and they became mode I cracks as they grow about 1 mm. The mode I transition points were found to be longer when surface tractions are higher or bulk stress is lower. Before the crack becomes mode I crack, 'well point' where crack grow about rate is minimum, was detected under every experimental condition. The crack behaviour was found to be affected by surface tractions, contact area, bulk stress. It was also found that partial slip and stick condition is most detrimental and the crack starts from the boundary of stick and slip. For gross slip crack started at the outside edge of pad. After crack mode transition, fretting fatigue cracks showed almost same behaviour of plain mode I fatigue cracks. Equivalent stress intensity factor was used to analyze the behaviour of fretting fatigue cracks and it was found that stress intensity factors can be applied to fretting fatigue cracks.

Analytical Approach of Polymer Flow in Thermal Nanoimprint Lithography (열-나노임프린트 리소그래피 공정에서의 폴리머 유동에 대한 해석적 접근)

  • Kim, Kug-Weon;Kim, Nam-Woong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.20-26
    • /
    • 2008
  • Nanoimprint lithography(NIL) is becoming next generation lithography of significant interest due to its low cost and a potential patterning resolution of 10nm or less. Success of the NIL relies on the adequate conditions of pressure, temperature and time. To have the adequate conditions for NIL, one has to understand the polymer flowing behavior during the imprinting process. In this paper, an analytical approach of polymer flow in thermal NIL was performed based on the squeeze flow with partial slip boundary conditions. Velocity profiles and pressure distributions of the polymer flow were obtained and imprinting forces and residual thickness were predicted with the consideration of the slip velocity between the polymer and the mold/substrate. The results show that the consideration of the slip is very important for investigating the polymer flow in Thermal NIL.

Connection Tests for Cold-Formed Steel Wall Panels (냉간성형강 벽체패널의 연결부실험)

  • Lee, Young-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.739-746
    • /
    • 2014
  • The objective of this test series was to determine shear load per unit length which causes a unit slip in the fastener joint. The shear load is one of major factors which reflect partial composite action for cold-formed steel wall stud panels. Test method used were based on the methods presented in the 1962 AISI Specification. According to the comparison with experimental strength, it is seen that the shear loads used in nominal axial strength predictions made acceptable results.

A Study on the Depth Dependent Characteristics of Earthquake Ground Motions in a Layered Ground Medium Using Point Source Models (점진원모델을 사용한 층상지반에서의 깊이에 따른 지반운동 특성 변화연구)

  • Koh, Hyun Moo;Kim, Jae Kwan;Kwon, Ki Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.453-462
    • /
    • 1994
  • Variation of seismic wave field in a multi-layered attenuating elastic half space is studied by the propagator matrix method and point source models of which fault-slip functions are defined as ramp functions. In this paper, the earth is modeled as being composed of horizontally stratified layers, with uniform material properties for each layer. The partial differential equations for the seismic motion in each layer are solved using a Fourier Hankel transform approach. Time histories and frequency contents of accelerations and displacements due to a vertical dip-slip and strike-slip point source located in the underlain half space are calculated at the layer interfaces using the developed programs and their characteristics are represented.

  • PDF

Real-Time Prediction of Optimal Control Parameters for Mobile Robots based on Estimated Strength of Ground Surface (노면의 강도 추정을 통한 자율 주행 로봇의 실시간 최적 주행 파라미터 예측)

  • Kim, Jayoung;Lee, Jihong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.58-69
    • /
    • 2014
  • This paper proposes a method for predicting maximum friction coefficients and optimal slip ratios as optimal control parameters for traction control or slip control of autonomous mobile robots on rough terrain. This paper focuses on strength of ground surface which indicates different characteristics depending on material types on surface. Strength of various material types can be estimated by Willoughby sinkage model and by a developed testbed which can measure forces, velocities, and displacements generated by wheel-terrain interaction. Estimated strength is collaborated on building improved Brixius model with friction-slip data from experiments with the testbed over sand and grass material. Improved Brixius model covers widespread material types in outdoor environments on predicting friction-slip characteristics depending on strength of ground surface. Thus, a prediction model for obtaining optimal control parameters is derived by partial differentiation of the improved Brixius model with respect to slip. This prediction model can be applied to autonomous mobile robots and finally gives secure maneuverability on rough terrain. Proposed method is verified by various experiments under similar conditions with the ones for real outdoor robots.

Lubrication phenomenon in the stagnation point flow of Walters-B nanofluid

  • Muhammad Taj;Manzoor Ahmad;Mohamed A. Khadimallah;Saima Akram;Muzamal Hussain;Madeeha Tahir;Faisal Mehmood Butt;Abdelouahed Tounsi
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.303-312
    • /
    • 2023
  • The present study investigates the effects of Cattaneo-Christov thermal effects of stagnation point in Walters-B nanofluid flow through lubrication of power-law fluid by taking the slip at the interfacial condition. For the solution, the governing partial differential equation is transformed into a series of non-linear ordinary differential equations. With the help of hybrid homotopy analysis method; that consists of both the homotopy analysis and shooting method these equations can be solved. The influence of different involved constraints on quantities of interest are sketched and discussed. The viscoelastic parameter, slip parameters on velocity component and temperature are analyzed. The velocity varies by increase in viscoelastic parameter in the presence of slip parameter. The slip on the surface has major effect and mask the effect of stagnation point for whole slip condition and throughout the surface velocity remained same. Matched the present solution with previously published data and observed good agreement. It can be seen that the slip effects dominates the effects of free stream and for the large values of viscoelastic parameter the temperature as well as the concentration profile both decreases.

Analysis of the Composite Section in PSC-Steel Hybrid Girder (PSC-강 혼합거더의 연결부 거동 해석)

  • Kim Kwang Soo;Jung Kwang Hoe;Shim ChungWook;Yoo Sung Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.766-769
    • /
    • 2004
  • This paper presents 3D nonlinear analysis considering the slip of composite section as well as the static load tests of PSC-Steel hybrid girders. According to the slip modulus, the nonlinear analysis shows that the behavior of hybrid girders could be divided into three parts as full-composite, partial-composite and non-composite. However, the experimental results show that the PSC-Steel hybrid girders with shear connectors take the part of partial composite action in ultimate load stage. In addition, the load test results give that stud shear connectors and welded reinforcements have contributed to improve the ultimate strength of hybrid girders for about $20\%$.

  • PDF

ACCURATE SOLUTION FOR SLIDING BURGER FLUID FLOW

  • ZUBAIR, MUHAMMAD;HAYAT, TASAWAR
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.5_6
    • /
    • pp.429-442
    • /
    • 2019
  • This article addresses the influence of partial slip condition in the hydromagnetic flow of Burgers fluid in a rotating frame of reference.The flows are induced by oscillation of a boundary. Two problems for oscillatory flows are considered. Exact solutions to the resulting boundary value problems are constructed. Analysis has been carried out in the presence of magnetic field. Physical interpretation is made through the plots for various embedded parameters.

A piecewise linear transverse shear transfer model for bolted side-plated beams

  • Li, Ling-Zhi;Jiang, Chang-Jiu;Su, Ray Kai-Leung;Lo, Sai-Huen
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.443-453
    • /
    • 2017
  • The performance of bolted side-plated (BSP) beams is affected by the degree of transverse partial interaction, which is a result of the interfacial slip caused by transverse shear transfer between the bolted steel plates and the reinforced concrete beams. However, explicit formulae for the transverse shear transfer profile have yet to be derived. In this paper, a simplified piecewise linear shear transfer model was proposed based on force superposition principle and simplification of shear transfer profiles derived from a previous numerical study. The magnitude of shear transfer was determined by force equilibrium and displacement compatibility condition. A set of design formulae for BSP beams under several basic load cases was also derived. Then the model was verified by test results. A worked example was also provided to illustrate the application of the proposed design formulae. This paper sheds some light on the shear force transfer mechanism of anchor bolts in BSP beams, and offers a practical method to evaluate the influence of transverse partial interaction in strengthening design.