• Title/Summary/Keyword: Partial Safety Factor

Search Result 85, Processing Time 0.028 seconds

Partial Safety Factor of Offshore Wind Turbine Pile Foundation in West-South Mainland Sea (서남해안 해상풍력단지 말뚝기초의 부분안전계수)

  • Yoon, Gil Lim;Kim, Sun Bin;Kwon, O Soon;Yoo, Moo Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1489-1504
    • /
    • 2014
  • This paper is aimed to suggest a site specific partial safety factor of offshore wind turbine (OWT) pile foundation design for the offshore wind turbine complex at a West-South mainland sea in Korea. International offshore wind design standards such as IEC, GL, DNV, API, ISO and EUROCODE were compared with each partial safety factor and resistance factor. Soil uncertainty analysis using a large number of soil data sampled was carried out, and their results were adapted to estimate partial safety factor of OWT pile foundation through reliability analyses. The representative partial safety factor has been estimated as 1.3. When a proposed partial factor is willing to use to other sites, it is recommended that further studies on code calibration are required to validate their accuracy using more site characterization data.

A Study of Limit State Design Method in Soil Slope (토사면의 한계상태 설계법에 관한 연구)

  • Joung, Gi-Hun;Kim, Jong-Min;Jang, Bum-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.129-136
    • /
    • 2005
  • The deterministic analysis method has generally used to evaluate the slope stability and it evaluates the slope stability with decision value that is a representative value of design variables. However, one of disadvantages in the deterministic approach is there is not able to consider the uncertainty of soil strength properties, even though it is the biggest influential parameter of the slope stability. On the other hand, the limit state design(LSD) can take a consideration of uncertainties and computes both the reliability index and the probability of failure. LSD method is capable of overcoming the disadvantages of deterministic method and evaluating the slope stability more reliably. In this study, both the mean value and standard deviation of the internal land's representative soil strength properties applied to process the LSD method. The major purpose of this study is to gauge the general applicability of the limit state design in soil slope and to weigh the comparative validity of the proposed partial safety factor. In order to reach the aim of this study, the partial safety factor and resistance factor which totally satisfied the slope's overall safety factor were calculated by the load and resistance safety factor design (LRFD).

  • PDF

Partial safety factors for retaining walls and slopes: A reliability based approach

  • GuhaRay, Anasua;Baidya, Dilip Kumar
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.99-115
    • /
    • 2014
  • Uncertainties in design variables and design equations have a significant impact on the safety of geotechnical structures like retaining walls and slopes. This paper presents a possible framework for obtaining the partial safety factors based on reliability approach for different random variables affecting the stability of a reinforced concrete cantilever retaining wall and a slope under static loading conditions. Reliability analysis is carried out by Mean First Order Second Moment Method, Point Estimate Method, Monte Carlo Simulation and Response Surface Methodology. A target reliability index ${\beta}$ = 3 is set and partial safety factors for each random variable are calculated based on different coefficient of variations of the random variables. The study shows that although deterministic analysis reveals a safety factor greater than 1.5 which is considered to be safe in conventional approach, reliability analysis indicates quite high failure probability due to variation of soil properties. The results also reveal that a higher factor of safety is required for internal friction angle ${\varphi}$, while almost negligible values of safety factors are required for soil unit weight ${\gamma}$ in case of cantilever retaining wall and soil unit weight ${\gamma}$ and cohesion c in case of slope. Importance of partial safety factors is shown by analyzing two simple geotechnical structures. However, it can be applied for any complex system to achieve economization.

Reliability based partial safety factor of concrete containing nano silica and silica fume

  • Nanda, Anil Kumar;Bansal, Prem Pal;Kumar, Maneek
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.385-395
    • /
    • 2020
  • The influence of combination of nano silica and silica fume, as partial cement replacement materials, on the properties of concrete has been studied through the measurement of compressive strength. The compressive strength of concrete in terms of mean, standard deviation and with-in-test coefficient of variation related to the variation in the nominated parameters have also been developed. The compressive strength data developed experimentally has been analyzed using normal-probability distribution and partial safety factors of composite concretes have been evaluated by using first order second moment approach with Hasofer Lind's method. The use of Nano silica and silica fume in concrete decreases the partial safety factor of concrete i.e., increase the reliability of concrete. The experimental results show that the properties of concrete having nano silica and silica fume in combination were better than that of a plain concrete. The SEM test results showing the level of Ca(OH)2 in plain concrete and consumption level Ca(OH)2 of concrete containing nano silica & silica fume have also been presented.

Reliability Analysis and Evaluation of Partial Safety Factors for Sliding of Caisson Breakwaters in Korea (국내 케이슨 방파제의 활동에 대한 신뢰성 해석 및 부분안전계수 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.4
    • /
    • pp.278-289
    • /
    • 2009
  • In the present study, we evaluated the target reliability indices and partial safety factors for caisson sliding of a vertical breakwater. The average of the reliability indices of existing breakwaters was proposed as the target reliability index for the breakwater of normal safety level. The target reliability indices of high and low safety levels were also proposed based on the analysis of breakwaters in Korea and Japan. The partial safety factors were then proposed for each safety level by averaging the values calculated for 12 breakwater crosssections in Korea. The appropriateness of the proposed partial safety factors was partly verified by showing that the reliability index calculated by using the present partial safety factors is located between those of mild and steep bottom slopes of JPHA(2007). The proposed partial safety factors were inversely used to calculate the caisson width and reliability index of existing breakwaters. While the reliability indices of existing breakwaters designed by the deterministic method show a large variation, those designed by the partial safety factor method show a small variation. This indicates that the partial safety factor method allows a consistent design for given target probability of failure.

Evaluation of Partial Safety Factors for Tetrapod Armor Blocks Depending on the Shape Parameter of Extreme Wave Height Distributions (극치파고분포의 형상 모수에 따른 Tetrapod 피복블록의 부분안전계수 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck;Lee, Dong-Young;Jun, Ki-Cheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.59-69
    • /
    • 2012
  • Probabilistic design is required to effectively consider the coastal environment of great uncertainty. However, designers who are familiar with the deterministic design method prefer a method which is similar to the existing method but is based on the probabilistic concept. Therefore, the partial safety factor method has been adopted as a new design method over the world. In Korea, Tetrapod is widely used for armoring rubble mound breakwaters. Even though the partial safety factor method developed in the United States and Europe covers Tetrapods, the limited wave and structure conditions in its development make the engineers hesitate about its use in practical breakwater design. In this study, partial safety factors for Tetrapod armor blocks have been developed by analyzing 116 breakwater cross-sections and wave conditions in 16 trade harbors and 15 coastal harbors with the FORM and optimal code calibration approach. Especially, partial safety factors have been proposed depending on the shape parameter of the Weibull extreme wave height distribution. For other types of extreme distributions, it is possible to apply the proposed partial safety factors using the relationship between skewness coefficient and shape parameter. Finally, the proposed partial safety factors have been applied to existing structures to show that they better satisfy the target reliability of the structures than previous partial safety factors.

The Concepts and the Applications of Load and Resistance Factor Design and Partial Safety Factor Based on the Reliability Engineering (신뢰성공학에 근거한 하중-강도계수 설계법과 부분안전계수의 개념 및 적용)

  • Yoo, Yeon-Sik;Kim, Tae-Wan;Kim, Jong-In
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.309-314
    • /
    • 2007
  • Recently, the LRFD and the PSF based on structural reliability assessment have been applied to NPP designs in behalf of the conventional deterministic design methods. In the risk-informed structural integrity, it is especially possible to optimize design procedures considering cost, manufacturing and maintenance because the structural reliability concepts have confirmed the reliability for which a designer aims. Generally, in order to evaluate the PSF, the LRFD which is the design concept for evaluating safety factors respectively on the limit state function including load and resistance. This study certifies the concept and its applications of the PSF using the LRFD based on the structural reliability engineering.

  • PDF

COLLAPSE PRESSURE ESTIMATES AND THE APPLICATION OF A PARTIAL SAFETY FACTOR TO CYLINDERS SUBJECTED TO EXTERNAL PRESSURE

  • Yoo, Yeon-Sik;Huh, Nam-Su;Choi, Suhn;Kim, Tae-Wan;Kim, Jong-In
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.450-459
    • /
    • 2010
  • The present paper investigates the collapse pressure of cylinders with intermediate thickness subjected to external pressure based on detailed elastic-plastic finite element (FE) analyses. The effect of the initial ovality of the tube on the collapse pressure was explicitly considered in the FE analyses. Based on the present FE results, the analytical yield locus, considering the interaction between the plastic collapse and local instability due to initial ovality, was also proposed. The collapse pressure values based on the proposed yield locus agree well with the present FE results; thus, the validity of the proposed yield locus for the thickness range of interest was verified. Moreover, the partial safety factor concept based on the structural reliability theory was also applied to the proposed collapse pressure estimation model, and, thus, the priority of importance of respective parameter constituting for the collapse of cylinders under external pressure was estimated in this study. From the application of the partial safety factor concept, the yield strength was concluded to be the most sensitive, and the initial ovality of tube was not so effective in the proposed collapse pressure estimation model. The present deterministic and probabilistic results are expected to be utilized in the design and maintenance of cylinders subjected to external pressure with initial ovality, such as the once-through type steam generator.

Evaluation of Partial Safety Factors for Armor Units of Coastal Structures (피복재의 부분안전계수 산정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.336-344
    • /
    • 2007
  • A method is developed to evaluate partial safety factors for armor units, by which uncertainties of random variables in reliability function as well as wave height distribution with service periods could take into account straightforwardly. It is found that partial safety factors for resistance and wave height are correctly increased with improving target levels on failure of coastal structures at the same return and service periods. Therefore, it nay be possible to determine design variables through the same processes as those of deterministic method by using the partial safety factors for resistance and wave height evaluated in this paper, since uncertainties of random variables and the effects of service periods and target probability failure are directly considered in the processes of evaluation of partial safety factors.

Analysis of Probabilities of Failure and Partial Safety Factors of Armor Units on Tranding and Coastal Harbors (무역항 및 연안항 피복재의 파괴확률과 부분안전계수 해석)

  • Lee, Cheol-Eung;Park, Dong-Heon
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.157-165
    • /
    • 2008
  • Level II AFDA and Level III MCS reliability models are applied to analyze the stability of armor units on trading and coastal harbors in Korea. Hudson's formula and Van der Meer's formula are used in this reliability analysis. Also, probability density functions of reliability index and probability of failure are derived by the additional analysis. In addition, the partial safety factors of all harbors related to armor units can be straightforwardly evaluated by the inverse-reliability method. The upper and lower limits and average level of partial safety factors can be statistically investigated with the results of all cases applied in this paper. Therefore, it may be possible to design armor units of new breakwaters including the uncertainty of random variable and target level by using the present results.

  • PDF