• 제목/요약/키워드: Partial Ground Effect

검색결과 46건 처리시간 0.028초

Laboratory analysis of loose sand mixed with construction waste material in deep soil mixing

  • Alnunu, Mahdi Z.;Nalbantoglu, Zalihe
    • Geomechanics and Engineering
    • /
    • 제28권6호
    • /
    • pp.559-571
    • /
    • 2022
  • Deep soil mixing, DSM technique has been widely used to improve the engineering properties of problematic soils. Due to growing urbanization and the industrial developments, disposal of brick dust poses a big problem and causes environmental problems. This study aims to use brick dust in DSM application in order to minimize the waste in brick industry and to evaluate its effect on the improvement of the geotechnical properties. Three different percentages of cement content: (10, 15 and 20%) were used in the formation of soil-cement mixture. Unlike the other studies in the literature, various percentages of waste brick dust: (10, 20 and 30%) were used as partial replacement of cement in soil-cement mixture. The results indicated that addition of waste brick dust into soil-cement mixture had positive effect on the inherent strength and stiffness of loose sand. Cement replaced by 20% of brick dust gave the best results and reduced the final setting time of cement and resulted in an increase in unconfined compressive strength, modulus of elasticity and resilient modulus of sand mixed with cement and brick dust. The findings were also supported by the microscopic images of the specimens with different percentages of waste brick dust and it was observed that waste brick dust caused an increase in the interlocking between the particles and resulted in an increase in soil strength. Using waste brick dust as a replacement material seems to be promising for improving the geotechnical properties of loose sand.

한반도 지역의 효율적인 관측을 위한 최적의 위성군 설계 (Optimal Design of Satellite Constellation Korean Peninsula Regions)

  • 김남균;박상영;김영록;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • 제25권2호
    • /
    • pp.181-198
    • /
    • 2008
  • 최근 들어 소형의 저궤도 위성들을 이용해서 특정 지역을 관측하기 위한 위성군의 궤도를 설계하는 것의 중요성이 점점 부각되고 있다. 일반적으로 많이 사용하는 Walker 위성군 설계 방법은 전 지구영역 관측에는 적당하지만 부분적인 지역 관측에는 효율성이 떨어진다. 이 논문에서는 한반도를 효율적으로 관측하기 위한 최적의 위성군 궤도 설계 방법을 연구하였다. 이를 위해 원궤도 중 지표면 반복궤도를 이용하여 위성군을 이루고 있는 위성들의 궤도요소를 직접 조절하는 방법을 사용하였다. 관측 목표 지역에 대해 최소한의 위성을 이용하여 관측 공백시간을 최소화하고 관측시간은 최대화하는 궤도요소를 산출하여 위성군 궤도를 설계하였다. 위성군 설계 결과, 저궤도 위성을 이용하였을 경우, 관측 가능한 최소 고도각을 12도로 가정하였을 때 한반도 지역의 관측을 효율적(관측 공백시간은 1시간 이내로 하면서 최대의 관측시간을 보장)으로 하려면 최소한 4대의 위성이 필요하다는 결과를 얻었다. 그리고 이 연구에서 제시된 방법이 Walker 방법보다 더 효율적이라는 것을 확인하였다. 이 연구를 통해서 개발된 알고리즘은 향후 우리나라가 실제로 위성군을 운영하고자 할 때 사전 임무 설계를 위하여 사용될 수 있다.

Effect of Sample Preparation on Prediction of Fermentation Quality of Maize Silages by Near Infrared Reflectance Spectroscopy

  • Park, H.S.;Lee, J.K.;Fike, J.H.;Kim, D.A.;Ko, M.S.;Ha, Jong Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권5호
    • /
    • pp.643-648
    • /
    • 2005
  • Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid, accurate method of evaluating some chemical constituents in cereal grains and forages. If samples could be analyzed without drying and grinding, then sample preparation time and costs may be reduced. This study was conducted to develop robust NIRS equations to predict fermentation quality of corn (Zea mays) silage and to select acceptable sample preparation methods for prediction of fermentation products in corn silage by NIRS. Prior to analysis, samples (n = 112) were either oven-dried and ground (OD), frozen in liquid nitrogen and ground (LN) and intact fresh (IF). Samples were scanned from 400 to 2,500 nm with an NIRS 6,500 monochromator. The samples were divided into calibration and validation sets. The spectral data were regressed on a range of dry matter (DM), pH and short chain organic acids using modified multivariate partial least squares (MPLS) analysis that used first and second order derivatives. All chemical analyses were conducted with fresh samples. From these treatments, calibration equations were developed successfully for concentrations of all constituents except butyric acid. Prediction accuracy, represented by standard error of prediction (SEP) and $R^2_{v}$ (variance accounted for in validation set), was slightly better with the LN treatment ($R^2$ 0.75-0.90) than for OD ($R^2$ 0.43-0.81) or IF ($R^2$ 0.62-0.79) treatments. Fermentation characteristics could be successfully predicted by NIRS analysis either with dry or fresh silage. Although statistical results for the OD and IF treatments were the lower than those of LN treatment, intact fresh (IF) treatment may be acceptable when processing is costly or when possible component alterations are expected.

설계법에 따른 풍화토 지반 얕은기초의 안전여유 비교 (Comparison of Safety Margin of Shallow Foundation on Weathered Soil Layer According to Design Methods)

  • 김동건;황희석;유남재
    • 한국지반환경공학회 논문집
    • /
    • 제17권12호
    • /
    • pp.55-64
    • /
    • 2016
  • 본 논문에서는 기존의 허용응력설계법(ASD)과 신뢰성해석에 기반을 둔 하중저항계수설계법(LRFD)과 유로코드의 부분안전계수설계법(PSFD)을 사용하여 풍화토지반 얕은기초의 전단파괴에 대한 지지력과 안전여유 산정결과에 대하여 비교 분석하였다. 얕은기초의 지지력에 영향을 주는 지반정수의 불확실성을 정량화하기 위하여 시공 및 설계용 평판재하시험 자료를 수집하고 확률 통계 분석을 통하여 극한지지력의 저항편향계수와 변동계수를 조사하였다. 국내 현장의 얕은기초 대표 단면 예에 대한 신뢰성해석(FORM)을 통하여 신뢰도지수를 구하고 지반정수의 확률변수가 전단파괴에 미치는 영향을 조사하기 위하여 확률변수의 민감도 분석을 하였다. ASD설계법, ASD설계법의 안전율에 대응하는 목표신뢰도 지수의 LRFD설계법, PSFD설계법을 사용하여 얕은기초 대표단면의 안정성 검토를 실시하여 산정된 각 설계법의 안전여유에 대하여 비교 검토를 실시하였다.

대구 지하철 구간내 선형 변동에 따른 소음 및 진동 저감 방안 연구 (The optimal control methods to reduce the environmental hazards surrounding the YoungNam Uni. Rotary of City Taegu constructing Subway Line No.1)

  • 지왕률;최재진;강상수;강대우
    • 터널과지하공간
    • /
    • 제7권2호
    • /
    • pp.116-129
    • /
    • 1997
  • The objective of this study is to predict the minimization effect of the noise and vibration during the construction and the train operation regarding to the design modification of the Taegu Subway Line No. 1. It was suggested optimal control blasting methods to reduce the causing vibration Nuance to the resident in City Taegu and also proposed the better governing method to decrease the environmental hazard to the near buildings and residents during the train operation. When the high-density gaseous reaction of explosion products exerts a high pressure in motion outward, a dynamic stress field will be created in the surrounding buildings. Therefore, in the region close to the charge, permanent damage begins to occur at a great critical level of partial velocity, that is difficult from different structure as working conditions. It is reliable to predict that the damages could be reduced if we know the peak velocity and the exact reasons through the conducting of detail studies of structural analysis of the related buildings with the optimal blasting designs. A blasting technique should be deemed to take advantage of the reduction of damage of the surrounding rocks and structures to improve the in-city blasting. This is a typical in-city blasting operation where success depends on closely controlling the ground vibrations in case of better designed blasting methods. There are techniques that can be applied to prevent large vibrations from damaging the important buildings through the Route Modification of the Taegu Subway Line No. 1.

  • PDF

Influence of Iranian low-reactivity GGBFS on the properties of mortars and concretes by Taguchi method

  • Ramezanianpour, A.A.;Kazemian, A.;Radaei, E.;AzariJafari, H.;Moghaddam, M.A.
    • Computers and Concrete
    • /
    • 제13권4호
    • /
    • pp.423-436
    • /
    • 2014
  • Ground Granulated Blast Furnace Slag (GGBFS) is widely used as an effective partial cement replacement material. GGBFS inclusion has already been proven to improve several performance characteristics of concrete. GGBFS provides enhanced durability, including high resistance to chloride penetration and protection against alkali silica reaction. In this paper results of an experimental research work on influence of low-reactivity GGBFS (which is largely available in Iran) on the properties of mortars and concretes are reported. In the first stage, influence of GGBFS replacement level and fineness on the compressive strength of mortars was investigated using Taguchi method. The analysis of mean (ANOM) statistical approach was also adopted to develop the optimal conditions. Next, based on the obtained results, concrete mixtures were designed and water penetration, capillary absorption, surface resistivity, and compressive strength tests were carried out on highstrength concrete specimens at different ages up to 90 days. The results indicated that 7-day compressive strength is adversely affected by GGBFS inclusion, while the negative effect is less evident at later ages. Also, it was inferred that use of low-reactivity GGBFS (at moderate levels such as 20% and 30%) can enhance the impermeability of high-strength concrete since 28 days age.

Plastic viscosity based mix design of self-compacting concrete with crushed rock fines

  • Kalyana Rama, JS;Sivakumar, MVN;Vasan, A;Kubair, Sai;Ramachandra Murthy, A
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.461-468
    • /
    • 2017
  • With the increasing demand in the production of concrete, there is a need for adopting a feasible, economical and sustainable technique to fulfill practical requirements. Self-Compacting Concrete (SCC) is one such technique which addresses the concrete industry in providing eco-friendly and cost effective concrete. The objective of the present study is to develop a mix design for SCC with Crushed Rock Fines (CRF) as fine aggregate based on the plastic viscosity of the mix and validate the same for its fresh and hardened properties. Effect of plastic viscosity on the fresh and hardened properties of SCC is also addressed in the present study. SCC mixes are made with binary and ternary blends of Fly Ash (FA) and Ground Granulated Blast Slag (GGBS) with varying percentages as a partial replacement to Ordinary Portland Cement (OPC). The proposed mix design is validated successfully with the experimental investigations. The results obtained, indicated that the fresh properties are best achieved for SCC mix with ternary blend followed by binary blend with GGBS, Fly Ash and mix with pure OPC. It is also observed that the replacement of sand with 100% CRF resulted in a workable and cohesive mix.

Effect of progressive shear punch of a foundation on a reinforced concrete building behavior

  • Naghipour, Morteza;Niak, Kia Moghaddas;Shariati, Mahdi;Toghroli, Ali
    • Steel and Composite Structures
    • /
    • 제35권2호
    • /
    • pp.279-294
    • /
    • 2020
  • Foundation of a building is damaged under service loads during construction. First visit shows that the foundation has been punched at the 6 column's foot region led to building rotation. Foundation shear punching occurring has made some stresses and deflections in construction. In this study, progressing of damage caused by foundation shear punching and inverse loading in order to resolve the building rotation has been evaluated in the foundation and frame of building by finite element modeling in ABAQUS software. The stress values of bars in punched regions of foundation has been deeply exceeded from steel yielding strength and experienced large displacement based on software's results. On the other hand, the values of created stresses in the frame are not too big to make serious damage. In the beams and columns of ground floor, some partial cracks has been occurred and in other floors, the values of stresses are in the elastic zone of materials. Finally, by inverse loading to the frame, the horizontal displacement of floors has been resolved and the values of stresses in frame has been significantly reduced.

Field behaviour geotextile reinforced sand column

  • Tandel, Yogendra K.;Solanki, Chandresh H.;Desai, Atul K.
    • Geomechanics and Engineering
    • /
    • 제6권2호
    • /
    • pp.195-211
    • /
    • 2014
  • Stone columns (or granular column) have been used to increase the load carrying capacity and accelerating consolidation of soft soil. Recently, the geosynthetic reinforced stone column technique has been developed to improve the load carrying capacity of the stone column. In addition, reinforcement prevents the lateral squeezing of stone in to surrounding soft soil, helps in easy formation of stone column, preserve frictional properties of aggregate and drainage function of the stone column. This paper investigates the improvement of load carrying capacity of isolated ordinary and geotextile reinforced sand column through field load tests. Tests were performed with different reinforcement stiffness, diameter of sand column and reinforcement length. The results of field load test indicated an improved load carrying capacity of geotextile reinforced sand column over ordinary sand column. The increase in load carrying capacity depends upon the sand column diameter, stiffness of reinforcement and reinforcement length. Also, the partial reinforcement length about two to four time's sand column diameter from the top of the column was found to significant effect on the performance of sand column.

100 kW 이상의 태양광 발전단위에서 전방 잡초 그림자 영향 분석에 의한 비정상 데이터 표준화 연구 (A Study of Standardization of Detecting Abnormal Data by Front Weed's Shadow Effect in over 100 kW Photo Voltaic Power Generation Unit)

  • 김홍명;이유리;정재학
    • Korean Chemical Engineering Research
    • /
    • 제58권3호
    • /
    • pp.416-423
    • /
    • 2020
  • 대부분의 태양광 발전시설물은 평지에 설치가 되는 것이 일반적이지만 소형 발전시설의 경우는 경사진 임야 등에 설치되는 경우도 많다. 그 외에는 드물게 건물의 옥상이나 콘크리트 위에 설치되는 경우가 있으나 이는 대부분 25 kW 미만의 소규모 설치이다. 일반 평지나 임야 등에 설치가 될 경우 관리를 지속적으로 하지 않으면 잡초가 자라고 일정 높이 이상 자라게 된 잡초는 태양광 모듈에 그림자의 영향을 줄 수 있게 된다. 그러나 잡초가 조금 자란 것이 영향을 주는지 주지 않는지 판단하기 힘들고 지속적인 관리를 위해서는 관리 비용이 발생하기 때문에 잡초가 태양광 발전에 영향을 주는 시점에서 정확하게 관리를 해준다면 가장 최소한의 관리비용으로 최대한의 태양광 발전량을 가져 올 수 있을 것으로 판단된다. 본 연구에서는 잡초가 의한 태양광 모듈의 발전에 영향을 미치는 형태를 모니터링을 통한 발전량 데이터를 분석하여 그 유형을 파악을 하고 모듈에서 잡초의 그림자 영향이 출력의 감소에 어떠한 영향을 주는지 실험을 통해 분석하였다. 이를 바탕으로 잡초의 영향을 모니터링 데이터 상의 수치로 기준을 정하였다. 또한 잡초의 영향을 장기적으로 방치를 하였을 경우 나타나게 되는 현상인 핫스팟(Hot spot) 발생의 기준을 수치적으로 표준화 하였다.