• Title/Summary/Keyword: Partial Elasticity

Search Result 70, Processing Time 0.022 seconds

Fabrication of R.P.D framework by using Acetal Resin (Acetal resin을 이용한 R.P.D framework의 제작)

  • Kim, Chung-Sook;Park, Myoung-Ho
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.107-114
    • /
    • 2001
  • R.P.D fabrication can be made if the skills already is properly used in the manufacturing press. You may feel extremely comfortable to wear it. The material used has high elasticity that it can endure the hole process of Acetal Wax pattern casting without any deformation moreover its adaptability is not bad. Because of the poor financial condition of patterns and health insurance, Acetal R.P.D Framework can be one of the best alternatives used for setting clasp partial denture cheaply. R.P.D Framework is aesthetically excellent. The color caused by saliva is so similar to that of the rest of teeth that even dentists as well as patients can not recognize clasp arm. Clasp also helps to secure prosthesis ideally without damaging teeth due to its deep position downward. Since dentists and patients have a good reaction to clasp so far, we are encouraged to apply it to other technical fields.

  • PDF

Bond-slip effect in steel-concrete composite flexural members: Part 1 - Simplified numerical model

  • Lee, WonHo;Kwak, Hyo-Gyoung;Hwang, Ju-young
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.537-548
    • /
    • 2019
  • This paper introduces an improved numerical model which can consider the bond-slip effect in steel-concrete composite structures without taking double nodes to minimize the complexity in constructing a finite element model. On the basis of a linear partial interaction theory and the use of the bond link element, the slip behavior is defined and the equivalent modulus of elasticity and yield strength for steel is derived. A solution procedure to evaluate the slip behavior along the interface of the composite flexural members is also proposed. After constructing the transfer matrix relation at an element level, successive application of the constructed relation is conducted from the first element to the last element with the compatibility condition and equilibrium equations at each node. Finally, correlation studies between numerical results and experimental data are conducted with the objective of establishing the validity of the proposed numerical model.

Concerning the tensor-based flexural formulation: Applications

  • Alhassan, Mohammed A.;Al-Rousan, Rajai Z.;Hejazi, Moheldeen A.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.765-777
    • /
    • 2021
  • Recently, the plate bending analysis has been interpreted in terms of the tensor's components of curvatures and bending moments by presenting the conceptual perspectives of the Hydrostatic Method of Analysis (HM) and theoretical formulations that combine the continuum mechanics with the graphical statics analysis, the theory of thin orthotropic and isotropic plates, and the elasticity theory. In pursuance of uncovering a genuine formulation of the plate's flexural differential equations, that possess the general-covariance and coordinates-independency. This study had then, tackled various natural and structural problems in both solid and fluid branches of the continuum mechanics in a description of such theoretical and conceptual attainment in uncovering the dimensional independent diffeomorphism covariant partial differential laws.

Intelligent big data analysis and computational modelling for the stability response of the NEMS

  • Juncheng Fan;Qinyang Li;Sami Muhsen;H. Elhosiny Ali
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.139-149
    • /
    • 2023
  • This article investigates the statically analysis regarding the thermal buckling behavior of a nonuniform small-scale nanobeam made of functionally graded material based on classic beam theories along with the nonlocal Eringen elasticity. The material distribution of functionally graded structures is composed of temperature-dependent ceramic and metal phases in axial and thickness directions, called two-dimensional functionally graded (2D-FG). The partial differential (PD) formulations and end conditions are extracted by using to the conservation energy method. The porosity voids are assumed in the nonuniform functionally graded (FG) structure. The thermal loads are in the axial direction of the beam. The extracted nonlocal PD equations are also solved by employing generalized differential quadrature method (GDQM). Last but not least, the information acquired is used to produce miniature sensors, providing a unique perspective on the growth of nanoelectromechanical systems (NEMS).

A novel of rotating nonlocal thermoelastic half-space with temperature-dependent properties and inclined load using the dual model

  • Samia M. Said
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.459-466
    • /
    • 2024
  • Eringen's nonlocal thermoelasticity theory is used to study wave propagations in a rotating two-temperature thermoelastic half-space with temperature-dependent properties. Using suitable non-dimensional variables, the harmonic wave analysis is used to convert the partial differential equations to ordinary differential equations solving the problem. The modulus of elasticity is given as a linear function of the reference temperature. MATLAB software is used for numerical calculations. Comparisons are carried out with the results in the context of the dual-phase lag model for different values of rotation, a nonlocal parameter, an inclined load, and an empirical material constant. The distributions of physical fields showed that the nonlocal parameter, rotation, and inclined load have great effects. When a nonlocal thermoelastic media is swapped out for a thermoelastic one, this approach still holds true.

Vibration of piezo-magneto-thermoelastic FG nanobeam submerged in fluid with variable nonlocal parameter

  • Selvamani Rajendran;Rubine Loganathan;Murat Yaylaci;Ecren Uzun Yaylaci;Mehmet Emin Ozdemir
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.489-500
    • /
    • 2024
  • This paper studies the free vibration analysis of the piezo-magneto-thermo-elastic FG nanobeam submerged in a fluid environment. The problem governed by the partial differential equations is determined by refined higher-order State Space Strain Gradient Theory (SSSGT). Hamilton's principle is applied to discretize the differential equation and transform it into a coupled Euler-Lagrange equation. Furthermore, the equations are solved analytically using Navier's solution technique to form stiffness, damping, and mass matrices. Also, the effects of nonlocal ceramic and metal parts over various parameters such as temperature, Magnetic potential and electric voltage on the free vibration are interpreted graphically. A comparison with existing published findings is performed to showcase the precision of the results.

A Mixed Variational Principle of Fully Anisotropic Linear Elasticity (이방성탄성문제의 혼합형변분원리)

  • 홍순조
    • Computational Structural Engineering
    • /
    • v.4 no.2
    • /
    • pp.87-94
    • /
    • 1991
  • In this paper, a mixed variational principle applicable to the linear elasticity of inhomogeneous anisotropic materials is presented. For derivation of the general variational principle, a systematic procedure for the variational formulation of linear coupled boundary value problems developed by Sandhu et al. is employed. Consistency condition of the field operators with the boundary operators results in explicit inclusion of boundary conditions in the governing functional. Extensions of admissible state function spaces and specialization to a certain relation in the general governing functional lead to the desired mixed variational principle. In the physical sense, the present variational principle is analogous to the Reissner's recent formulation obtained by applying Lagrange multiplier technique followed by partial Legendre transform to the classical minimum potential energy principle. However, the present one is more advantageous for the application to the general anisotropic materials since Reissner's principle contains an implicit function which is not easily converted to an explicit form.

  • PDF

Inverse Estimation Method for Spatial Randomness of Material Properties and Its Application to Topology Optimization on Shape of Geotechnical Structures (재료 물성치의 공간적 임의성에 대한 역추정 방법 및 지반구조 형상의 위상 최적화 적용)

  • Kim, Dae-Young;Song, Myung Kwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • In this paper, the spatial randomness and probability characteristics of material properties are inversely estimated by using a set of the stochastic fields for the material properties of geotechnical structures. By using the probability distribution and probability characteristics of these estimated material properties, topology optimization is performed on structure shape, and the results are compared with the existing deterministic topology optimization results. A set of stochastic fields for material properties is generated, and the spatial randomness of material properties in each field is simulated. The probability distribution and probability characteristics of actual material properties are estimated using the partial values of material properties in each stochastic field. The probability characteristics of the estimated actual material properties are compared with those of the stochastic field set. Also, response variability of the ground structure having a modulus of elasticity with randomness is compared with response variability of the ground structure having a modulus of elasticity without randomness. Therefore, the quantified stochastic topology optimization result can be obtained with considering the spatial randomness of actual material properties.

A cylindrical shell model for nonlocal buckling behavior of CNTs embedded in an elastic foundation under the simultaneous effects of magnetic field, temperature change, and number of walls

  • Timesli, Abdelaziz
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.581-593
    • /
    • 2021
  • This model is proposed to describe the buckling behavior of Carbon Nanotubes (CNTs) embedded in an elastic medium taking into account the combined effects of the magnetic field, the temperature, the nonlocal parameter, the number of walls. Using Eringen's nonlocal elasticity theory, thin cylindrical shell theory and Van der Waal force (VdW) interactions, we develop a system of partial differential equations governing the buckling response of CNTs embedded on Winkler, Pasternak, and Kerr foundations in a thermal-magnetic environment. The pre-buckling stresses are obtained by applying airy's stress function and an adjacent equilibrium criterion. To estimate the nonlocal critical buckling load of CNTs under the simultaneous effects of the magnetic field, the temperature change, and the number of walls, an optimization technique is proposed. Furthermore, analytical formulas are developed to obtain the buckling behavior of SWCNTs embedded in an elastic medium without taking into account the effects of the nonlocal parameter. These formulas take into account VdW interactions between adjacent tubes and the effect of terms involving differences in tube radii generally neglected in the derived expressions of the critical buckling load published in the literature. Most scientific research on modeling the effects of magnetic fields is based on beam theories, this motivation pushes me to develop a cylindrical shell model for studying the effect of the magnetic field on the static behavior of CNTs. The results show that the magnetic field has significant effects on the static behavior of CNTs and can lead to slow buckling. On the other hand, thermal effects reduce the critical buckling load. The findings in this work can help us design of CNTs for various applications (e.g. structural, electrical, mechanical and biological applications) in a thermal and magnetic environment.

Effect of Partial Prestressing Ratio and Effective Prestress on the Flexural Behavior of Prestressed Lightweight Concrete Beams (프리스트레스트 경량 콘크리트 보의 휨 거동에 대한 부분 프리스트레싱비와 유효 프리스트레스의 영향)

  • Yang, Keun-Hyeok;Moon, Ju-Hyun;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • The present investigation evaluates the flexural behavior of pre-tensioned lightweight concrete beams under two-point symmetrical concentrated loads according to the variation of the partial prestressing ratio and the effective prestress of prestressing strands. The designed compressive strength of the lightweight concrete with a dry density of 1,770 $kg/m^3$ was 35 MPa. The deformed bar with a yield strength of 383 MPa and three-wire mono-strands with tensile strength of 2,040 MPa were used for longitudinal tensile reinforcement and prestressing steel reinforcement, respectively. According to the test results, the flexural capacity of pre-tensioned lightweight concrete beams increased with the increase of the partial prestressing ratio and was marginally influenced by the effective prestress of strands. With the same reinforcing index, the normalized flexural capacity of pre-tensioned lightweight concrete beams was similar to that of pre-tensioned normal-weight concrete beams tested by Harajli and Naaman and Bennett. On the other hand, the displacement ductility ratio of pre-tensioned lightweight concrete beams increased with the decrease of the partial prestressing ratio and with the increase of the effective prestress of strands. The load-displacement relationship of pre-tensioned lightweight concrete beam specimens can be suitably predicted by the developed non-linear two-dimensional analysis procedure. In addition, the flexural cracking moment and flexural capacity of pre-tensioned lightweight concrete beams can be conservatively evaluated using the elasticity theorem and the approach specified in ACI 318-08, respectively.