Korean is an agglutinative language, and one or more morphemes are combined to form a single word. Part-of-speech tagging method separates each morpheme from a word and attaches a part-of-speech tag. In this study, we propose a new Korean part-of-speech tagging method based on the Head-Tail tokenization technique that divides a word into a lexical morpheme part and a grammatical morpheme part without decomposing compound words. In this method, the Head-Tail is divided by the syllable boundary without restoring irregular deformation or abbreviated syllables. Korean part-of-speech tagger was implemented using the Head-Tail tokenization and deep learning technique. In order to solve the problem that a large number of complex tags are generated due to the segmented tags and the tagging accuracy is low, we reduced the number of tags to a complex tag composed of large classification tags, and as a result, we improved the tagging accuracy. The performance of the Head-Tail part-of-speech tagger was experimented by using BERT, syllable bigram, and subword bigram embedding, and both syllable bigram and subword bigram embedding showed improvement in performance compared to general BERT. Part-of-speech tagging was performed by integrating the Head-Tail tokenization model and the simplified part-of-speech tagging model, achieving 98.99% word unit accuracy and 99.08% token unit accuracy. As a result of the experiment, it was found that the performance of part-of-speech tagging improved when the maximum token length was limited to twice the number of words.
기존의 한국어 품사 태깅 방식은 복합어를 단위 형태소들로 분해하여 품사를 부착하므로 형태소 태그가 세분화되어 있어서 태거의 활용 목적에 따라 불필요하게 복잡하고 다양한 어절 유형들이 생성되는 단점이 있다. 딥러닝 언어처리에서는 키워드 추출 목적으로 품사 태거를 사용할 때 복합조사, 복합어미 등 문법 형태소들을 단위 형태소로 분할하지 않는 토큰화 방식이 효율적이다. 본 연구에서는 어절을 형태소 단위로 토큰화할 때 어휘형태소 부분과 문법형태소 부분 두 가지 유형의 토큰으로만 분할하는 Head-Tail 토큰화 기법을 사용하여 품사 태깅 문제를 단순화함으로써 어절이 과도하게 분해되는 문제점을 보완하였다. Head-Tail 토큰화된 데이터에 대해 통계적 기법과 딥러닝 모델로 품사 태깅을 시도하여 각 모델의 품사 태깅 정확도를 실험하였다. 통계 기반 품사 태거인 TnT 태거와 딥러닝 기반 품사 태거인 Bi-LSTM 태거를 사용하여 Head-Tail 토큰화된 데이터셋에 대한 품사 태깅을 수행하였다. TnT 태거와 Bi-LSTM 태거를 Head-Tail 토큰화된 데이터셋에 대해 학습하여 품사 태깅 정확도를 측정하였다. 그 결과로, TnT 태거는 97.00%인데 비해 Bi-LSTM 태거는 99.52%의 높은 정확도로 품사 태깅을 수행할 수 있음을 확인하였다.
본 논문에서는 형태소 분석 단계에서 발생하는 형태소 모호성을 줄이기 위해서 말뭉치를 이용한 형태소 태깅을 구현한 시스템이다. 형태소 태깅을 위한 말뭉치가 대량의 것이 아니라도 효율적인 품사 분류와 태깅 알고리즘을 가지고 올바르고 효율적인 태깅을 할 수 있도록 하였다. 어절의 올바른 품사 태깅을 위해서 어절들 간의 인접도가 아니라 품사들 간의 인접도, 그리고 품사간의 제약 정보를 추가한 품사의 태깅에 이용을 하였다. 이와 같이 함으로 효율적인 시스템을 구현할 수 있었다.
Natural language processing (NLP) is an emerging research area in which we study how machines can be used to perceive and alter the text written in natural languages. We can perform different tasks on natural languages by analyzing them through various annotational tasks like parsing, chunking, part-of-speech tagging and lexical analysis etc. These annotational tasks depend on morphological structure of a particular natural language. The focus of this work is part-of-speech tagging (POS tagging) on Hindi language. Part-of-speech tagging also known as grammatical tagging is a process of assigning different grammatical categories to each word of a given text. These grammatical categories can be noun, verb, time, date, number etc. Hindi is the most widely used and official language of India. It is also among the top five most spoken languages of the world. For English and other languages, a diverse range of POS taggers are available, but these POS taggers can not be applied on the Hindi language as Hindi is one of the most morphologically rich language. Furthermore there is a significant difference between the morphological structures of these languages. Thus in this work, a POS tagger system is presented for the Hindi language. For Hindi POS tagging a hybrid approach is presented in this paper which combines "Probability-based and Rule-based" approaches. For known word tagging a Unigram model of probability class is used, whereas for tagging unknown words various lexical and contextual features are used. Various finite state machine automata are constructed for demonstrating different rules and then regular expressions are used to implement these rules. A tagset is also prepared for this task, which contains 29 standard part-of-speech tags. The tagset also includes two unique tags, i.e., date tag and time tag. These date and time tags support all possible formats. Regular expressions are used to implement all pattern based tags like time, date, number and special symbols. The aim of the presented approach is to increase the correctness of an automatic Hindi POS tagging while bounding the requirement of a large human-made corpus. This hybrid approach uses a probability-based model to increase automatic tagging and a rule-based model to bound the requirement of an already trained corpus. This approach is based on very small labeled training set (around 9,000 words) and yields 96.54% of best precision and 95.08% of average precision. The approach also yields best accuracy of 91.39% and an average accuracy of 88.15%.
International Journal of Computer Science & Network Security
/
제22권4호
/
pp.245-253
/
2022
Commenced in 1954 by IBM, machine translation has expanded immensely, particularly in this period. Machine translation can be broken into seven main steps namely- token generation, analyzing morphology, lexeme, tagging Part of Speech, chunking, parsing, and disambiguation in words. Morphological analysis plays a major role when translating Indian languages to develop accurate parts of speech taggers and word sense. The paper presents various machine translation methods used by different researchers for Indian languages along with their performance and drawbacks. Further, the paper concentrates on parts of speech (POS) tagging in Marathi dialect using various methods such as rule-based tagging, unigram, bigram, and more. After careful study, it is concluded that for machine translation, parts of speech tagging is a major step. Also, for the Marathi language, the Hidden Markov Model gives the best results for parts of speech tagging with an accuracy of 93% which can be further improved according to the dataset.
본 논문에서는 형태소 분석기를 사용하지 않는 음절 단위의 한국어 품사 태깅 방법론을 제안한다. 기존 연구에서 한국어 품사 태거는 형태소 분석기가 생성한 결과 중에서 문맥에 가장 잘 맞는 형태소/품사 열을 결정하는 데 반하여, 본 논문에서 제안한 방법론에서는 품사열을 결정할 뿐만 아니라 형태소도 생성한다. 398,632 어절의 학습 데이터로 학습을 하고 33,467 어절의 평가 데이터로 성능 평가를 한 결과 어절 단위의 정확도가 96.31%인 것으로 나타났다.
In this paper, a transformation-based English part of speech tagging system is designed and implemented. The tagging system tags raw corpus at first and the transformation rule correct the errors. Apart from traditional rule based tagging system, this system makes rules automatically. Using 60,000 words of corpus as a training corpus, the transformation rules are generated automatically by iterative training. The idea how to calculate positive effect of transformation and select transformation rules is proposed to generate more effective and correct transformations. In this paper, part of the Brown corpus and English text is used for experimental data. And the performance of transformation based tagging system is demonstrated by the calculation of accuracy.
본 논문에서는 어절별 중의성 해소 규칙과 trigram 통계 정보를 이용하는 혼합형 한국어 품사 태깅 시스템에 대하여 기술한다. 어절별 중의성 해소 규칙은 중의성을 가지는 어절들 각각에 대해 정의된 중의성 해소 규칙으로, 현재 중의성을 가지는 어절의 50%에 대해 작성되어 있다. 본 논문의 태깅 시스템은 먼저 보조용언, 숙어, 관용적 표현 등에 해당하는 공통규칙을 적용하고, 그 후에 어절별 중의성 해소 규칙을 적용한다. 마지막으로 중의성이 해소되지 않은 어절은 각 어절을 중심으로 하는 trigram 통계 정보를 이용하여 중의성을 해소한다. 실험 결과는 본 논문에서 제안하는 어절별 중의성 해소 규칙과 trigram 통계 정보를 혼합하여 중의성을 해소 시키는 방법이 높은 정확률과 넓은 처리 범위를 가지고 있다는 것을 보여준다.
Journal of Electrical Engineering and information Science
/
제2권6호
/
pp.7-13
/
1997
Morphological Analysis of Korean has known to be a very complicated problem. Especially, the degree of part-of-speech(POS) ambiguity is much higher than English. Many researchers have tried to use a hidden Markov model(HMM) to solve the POS tagging problem and showed arround 95% correctness ratio. However, the lack of lexical information involves a hidden Markov model for POS tagging in lots of difficulties in improving the performance. To alleviate the burden, this paper proposes a method for combining multiword units, which are types of lexical information, into a hidden Markov model for POS tagging. This paper also proposes a method for extracting multiword units from POS tagged corpus. In this paper, a multiword unit is defined as a unit which consists of more than one word. We found that these multiword units are the major source of POS tagging errors. Our experiment shows that the error reduction rate of the proposed method is about 13%.
규칙 정보와 통계 정보를 이용하는 복합적 품사 태깅은 통계를 기반으로 하는 방법의 견고함과 확장성을 가지고, 통계 정보에 벗어나는 언어현상들을 규칙 정보를 이용하여 해결함으로서 높은 정확도를 가질 수 있다. 하지만 기존의 연구는 규칙 정보의 제한적인 적용범위 때문에 통계 정보에 벗어나는 언어 현상을 처리할 수 없는 경우가 발생하게 된다. 본 논문에서는 이를 해결하기 위하여 어휘의 사전적 의미와 문맥적 관계를 반영할 수 있는 "어휘별 중의성 제거 규칙"을 제안한다. 어휘별 중의성 제거 규칙은 세종 말뭉치로 부터 말뭉치 데이터를 형태소 분석하여 상위 50%의 중의성 어휘에 대한 사전적 의미와 문맥적 관계를 고려한 품사 태깅 정보를 추출하고 이것을 규칙으로 만든 것이며, 현재까지 총 1,815개로 구성되어 있다. 어휘별 중의성 제거 규칙을 기존의 복합적 품사 태깅 시스템에 적용하여 품사 태깅의 정확도를 높일 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.