• 제목/요약/키워드: Parkinson′s disease (PD)

검색결과 248건 처리시간 0.027초

1-methyl-4-phenylpyridinium으로 유도된 신경 손상에 대한 quercetin-3-O-glucuronide의 보호 효과 (Protective Effects of Quercetin-3-O-glucuronide against 1-methyl-4-phenylpyridinium-induced Neurotoxicity)

  • 파리야르라메스;바스또라통킹;서정원
    • 생명과학회지
    • /
    • 제29권2호
    • /
    • pp.191-197
    • /
    • 2019
  • 파킨슨병은 운동완서, 근육경직, 진전 및 비정상적인 자세 등을 임상적 특징으로 하는 주로 운동 신경계에 영향을 주는 진행성 신경 퇴행성 질환이다. 파킨슨병은 산화 스트레스와 세포 내 신호 전달 경로의 조절 장애에 의한 뇌 흑색치밀부에서의 도파민성 신경세포의 사멸을 특징으로 한다. Quercetin의 주요 대사산물인 Quercetin-3-O-glucuronide (Q3GA)는 신경 보호 효과가 있는 것으로 보고 되어 왔다. 본 연구에서는 SH-SY5Y 세포에서 1-methyl-4-phenyl pyridinium ($MPP^+$)에 의해 유도된 신경 독성에 대한 Q3GA의 신경 보호 효과와 그 분자 조절 기전을 조사하였다. Q3GA는 $MPP^+$에 의해 유도된 세포 사멸을 유의적으로 감소시켰으며 PARP 절단을 감소시켰다. 또한, Bax/Bcl-2 비율의 감소와 함께 $MPP^+$에 의해 증가된 세포 내 ROS를 감소시켰다. Q3GA는 $MPP^+$에 의해 감소된 Akt와 CREB의 인산화를 유의적으로 회복시켰지만, ERK에는 영향을 미치지 않았다. 이 결과는 Q3GA가 ROS 생산 억제와 Akt/CREB 신호 전달 경로를 통해 $MPP^+$ 에 의해 유도된 신경 독성을 억제시킬 수 있음을 시사한다. 본 연구는 Q3GA가 파킨슨병에 대한 예방제 또는 치료제로 개발될 수 있는 가능성을 제시한다.

In Vitro Differentiation-induced hES Cells Relieve Symptomatic Motor Behavior of PD Animal Model

  • 이창현;김은경;이영재;주완석;조현정;길광수;이금실;신현아;안소연
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2002년도 국제심포지엄
    • /
    • pp.95-95
    • /
    • 2002
  • Human embryonic stem (hES) cells can be induced to differentiate into tyrosine hydroxylase expressing (TH+) cells that may serve as an alternative for cell replacement therapy for Parkinson's disease (PD). To examine in vitro differentiation of hES (MB03, registered in NIH) cells into TH+ cells, hES cells were induced to differentiate according to the 4-/4+ protocol using retinoic acid (RA), ascorbic acid (AA), and/or lithium chloride (LiCl) followed by culture in N2 medium for 14 days, during which time the differentiation occurs. Immunocytochemical stainings of the cells revealed that approximately 21.1% of cells treated with RA plus AA expressed TH protein that is higher than the ratio of TH+ cells seen in any other treatment groups (RA, RA+LiCl or RA+AA+LiCl). In order to see the differentiation pattern in vivo and the ability of in vitro differentiation-induced cells in easing symptomatic motor function of PD animal model, cells (2 $\times$ 10$^{5}$ cells/2${mu}ell$) undergone 4-/4+ protocol using RA plus AA without any further treatment were transplanted into unilateral striatum of MPTP-lesioned PD animal model (C57BL/6). Following the surgery, motor behavior of the animals was examined by measuring the retention time on an accelerating rotar-rod far next 10 weeks. No significant differences in retention time of the animals were noticed until 2 weeks post-graft; however, it increased markedly at 6 weeks and 10 weeks time point after the surgery. Immunohistochemical studies confirmed that a reasonable number of TH+ cells were found at the graft site as well as other remote sites, showing the migrating nature of embryonic stem cells. These results suggest that in viかo differentiated hES cells relieve symptomatic motor behavior of PD animal model and should be considered as a promising alternative for the treatment of PD.

  • PDF

파킨슨병과 본태성 진전의 감별진단에서 I-123 IPT(I-123-N-(3-iodopropen-2-yl)-$2{\beta}$-carbomethoxy-$3{\beta}$-(4-cholorophenyl) tropane) 뇌 단일광전자방출 전산화단층촬영의 역할 (Differentiation of Parkinson's Disease and Essential Tremor on I-123 IPT(I-123-N-(3-iodopropen-2-yl)-$2{\beta}$-carbomethoxy- $3{\beta}$-(4-cholorophenyl) tropane) Brain SPECT)

  • 배문선;최태현;안성민;최재용;류원기;이재훈;유영훈
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제43권2호
    • /
    • pp.100-106
    • /
    • 2009
  • 목적: 파킨슨병은 비교적 흔한 운동장애질환으로 흑질(substantia nigra)의 도파민성 신경세포와 해당되는 기저핵의 도파민 함유 신경말단의 퇴행성 변화에 의하여 선조체에서의 도파민 운반체 농도도 감소하는 것으로 알려져 있다. 본 연구는 I-123 IPT SPECT에서 선조체의 도파민 특이결합과 후두염 뇌피질의 비특이 결합비를 이용하여 초기 및 진행된 파킨슨병 환자군과 본태성 진전 등의 다른 운동장애 질환군, 정상 대조군에서 도파민 운반체 영상을 비교하였다. 대상 및 방법: 정상 대조군 50명과 초기 파킨슨병 환자군 20명, 진행된 파킨슨병 환자군 30명, 본태성 진전환자군 20명을 대상으로 I-123 IPT를 정맥 주사후 20분과 2시간 후에 SPECT 영상을 획득하고 재구성하였다. 후두염에 배후방사능 관심영역을 그리고 선조체의 I-123 IPT의 특이/비특이 결합비를 구하여 각 군간의 차이를 정량적 및 정성적으로 비교하여 보았다. 결과: 선조체의 I-123 IPT의 특이/비특이 결합비는 진행된 파킨슨병 환자군과 정상 대조군에서는 평균값의 차이가 유의하였다. 그러나 초기 파킨슨병 환자군과 본태성 진전 환자군 사이에는 특이/비특이 결합비가 중첩됨이 관찰되었다. 정상 대조군과 본태성 진전환자군에서는 2시간 영상이 20분 영상에 비하여 특이/비특이 결합비도 높게 나타났고 표준 편차도 적었다. 진행된 파킨슨병 환자에서는 20분 영상과 2 시간 영상의 특이/비특이 결합비는 차이가 없었고 그 값도 낮았다. 편측 파킨슨병 환자에서 I-123 IPT의 특이/비특이 결합비는 증상이 나타난 반대측 선조체뿐만 아니라 같은쪽 선조체에서도 감소되어 있었다. 초기 파킨슨 환자20명 중 편측 증상을 보인 7명의 환자에서 I-123 IPT SPECT상의 좌우측 선조체간의 특이/비특이 결합비 간의 차이를 이용한 편측화 결과는 임상 증상의 편측화와 일치하였다. 결론: I-123 IPT SPECT는 진행된 파킨슨병의 진단과 치료에 따른 임상경과 진행의 객관적인 지표로서의 역할을 할 수 있을 것으로 생각되며 임상 증상이 발현되기 전단계의 초기 파킨슨병의 진단이나 파킨슨병과 유사한 운동증상을 보일 수 있는 다른 운동질환군과의 감별진단에 있어서는 각 군간의 중첩되는 비율이 있으므로 적용에 신중을 기해야 하겠다.

Human Embryonic Stem Cells Co-Transfected with Tyrosine Hydroxylase and GTP Cyclohydrolase I Relieve Symptomatic Motor Behavior in a Rat Model of Parkinson′s Disease

  • Kil, Kwang-Soo;Lee, Chang-Hyun;Shin, Hyun-Ah;Cho, Hwang-Yoon;Yoon, Ji-Yeon;Lee, Gun-Soup;Lee, Young-Jae;Kim, Eun-Young;Park, Se-Pill
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.101-101
    • /
    • 2003
  • Main strategy for a treatment of Parkinson's disease (PD), due to a progressive degeneration of dopaminergic neurons, is a pharmaceutical supplement of dopamine derivatives or ceil replacement therapy. Both of these protocols have pros and cons; former exhibiting a dramatic relief but causing a severe side effects on long-term prescription and latter also having a proven effectiveness but having availability and ethical problems Embryonic stem (ES) cells have several characteristics suitable for this purpose. To investigate a possibility of using ES cells as a carrier of therapeutic gene(s), human ES (hES, MB03) cells were transfected with cDNAs coding for tyrosine hydroxylase (TH) in pcDNA3.1 (+) and the transfectants were selected using neomycin (250 $\mu /ml$). Expression of TH being confirmed, two of the positive clone (MBTH2 & 8) were second transfected with GTP cyclohydrolase 1 (GTPCH 1) in pcDNA3.1 (+)-hyg followed by selection with hygromycin-B (150 $\mu /ml$) and RT-PCR confirmation. By immune-cytochemistry, these genetically modified but undifferentiated dual drug-resistant cells were found to express few of the neuronal markers, such as NF200, $\beta$-tubulin, and MAP2 as well as astroglial marker GFAP. This results suggest that over-production of BH4 by ectopically expressed GTPCH I may be involved in the induction of those markers. Transplantation of the cells into striatum of 6-OHDA- denervated PD animal model relieved symptomatic rotational behaviors of the animals. Immunohistochemical analyses showed the presence of human cells within the striatum of the recipients. These results suggest a possibility of using hES cells as a carrier of therapeutic gene(s).

  • PDF

Inhibition of Monoamine Oxidase B by Cigarette Smoke Constituents

  • Lim, Heung-Bin;Sohn, Hyug-Ok;Lee, Young-Gu;Moon, Ja-Young;Kang, Young-Kook;Kim, Yong-Ha;Lee, Un-Chul;Lee, Dong-Wook
    • 한국연초학회지
    • /
    • 제19권2호
    • /
    • pp.136-144
    • /
    • 1997
  • Cigarette smoking is known to suppress both 1-methy14-phenyl-155,Ltetrahydropy-ridine (MPTP)-induced parkinsonism and idiopathic Parkinson's disease (PD). However, the precise mechanism underlying its protective action against PD is not clearly elucidated yet. In order to find possible clue on the mechanism of protective action of smoking, we investigated the inhibitory effect of cigarette smoke components on rat brain mitochondria1 monoamine oxidase B (MAO-B), responsible enzyme for the activation of MPTP to its toxic metabolitesr and identified the components having an inhibitory potency on this enzyme from cigarette smoke. Total 31 eligible constituents including nicotine were selected from cigarette smoke condensates via solvents partitioning and silica gel chromatographic separation, and inhibitory potencies of 19 components on MAO-B were determined. Hydroquinone and methylcatechol, the phenolic components, showed the strongest inhibitory potencies on MAO-B activity in the components tested. 3,4-Dihydroxybenzylamino, myosmine and indole in basic fracton, eugenol in phenolic fraction, and farnesol in neutral fraction also inhibited the enzyme activity dose-dependently. Among tobacco alkaloids tested only myosmine was effective for the inhibition of this enzyme. These results suggest that the decrease in MAO-B activity by such components derived from cigarette smoke seems to be related to the suppression of MPTP-induced neurotoxicity and to the less incidence of Parkinson's disease in smokers than in nonsmokers.

  • PDF

Implications of Circadian Rhythm in Dopamine and Mood Regulation

  • Kim, Jeongah;Jang, Sangwon;Choe, Han Kyoung;Chung, Sooyoung;Son, Gi Hoon;Kim, Kyungjin
    • Molecules and Cells
    • /
    • 제40권7호
    • /
    • pp.450-456
    • /
    • 2017
  • Mammalian physiology and behavior are regulated by an internal time-keeping system, referred to as circadian rhythm. The circadian timing system has a hierarchical organization composed of the master clock in the suprachiasmatic nucleus (SCN) and local clocks in extra-SCN brain regions and peripheral organs. The circadian clock molecular mechanism involves a network of transcription-translation feedback loops. In addition to the clinical association between circadian rhythm disruption and mood disorders, recent studies have suggested a molecular link between mood regulation and circadian rhythm. Specifically, genetic deletion of the circadian nuclear receptor Rev-$erb{\alpha}$ induces mania-like behavior caused by increased midbrain dopaminergic (DAergic) tone at dusk. The association between circadian rhythm and emotion-related behaviors can be applied to pathological conditions, including neurodegenerative diseases. In Parkinson's disease (PD), DAergic neurons in the substantia nigra pars compacta progressively degenerate leading to motor dysfunction. Patients with PD also exhibit non-motor symptoms, including sleep disorder and neuropsychiatric disorders. Thus, it is important to understand the mechanisms that link the molecular circadian clock and brain machinery in the regulation of emotional behaviors and related midbrain DAergic neuronal circuits in healthy and pathological states. This review summarizes the current literature regarding the association between circadian rhythm and mood regulation from a chronobiological perspective, and may provide insight into therapeutic approaches to target psychiatric symptoms in neurodegenerative diseases involving circadian rhythm dysfunction.

7,8,4'-Trihydroxyisoflavone, a Metabolized Product of Daidzein, Attenuates 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells

  • Ko, Yong-Hyun;Kim, Seon-Kyung;Kwon, Seung-Hwan;Seo, Jee-Yeon;Lee, Bo-Ram;Kim, Young-Jung;Hur, Kwang-Hyun;Kim, Sun Yeou;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • 제27권4호
    • /
    • pp.363-372
    • /
    • 2019
  • Daidzein isolated from soybean (Glycine max) has been widely studied for its antioxidant and anti-inflammatory activities. However, the protective effects of 7,8,4'-trihydroxyisoflavone (THIF), a major metabolite of daidzein, on 6-hydroxydopamine (OHDA)-induced neurotoxicity are not well understood. In the current study, 7,8,4'-THIF significantly inhibited neuronal cell death and lactate dehydrogenase (LDH) release induced by 6-OHDA in SH-SY5Y cells, which were used as an in vitro model of Parkinson's disease (PD). Moreover, pretreatment with 7,8,4'-THIF significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) and decreased malondialdehyde (MDA) activity in 6-OHDA-induced SH-SY5Y cells. In addition, 7,8,4'-THIF significantly recovered 6-OHDA-induced cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), increased Bax, and decreased Bcl-2 levels. Additionally, 7,8,4'-THIF significantly restored the expression levels of phosphorylated c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK 1/2), phosphatidylinositol 3-kinases (PI3K)/Akt, and glycogen synthase kinase-3 beta ($GSK-3{\beta}$) in 6-OHDA-induced SH-SY5Y cells. Further, 7,8,4'-THIF significantly increased the reduced tyrosine hydroxylase (TH) level induced by 6-OHDA in SH-SY5Y cells. Collectively, these results suggest that 7,8,4'-THIF protects against 6-OHDA-induced neuronal cell death in cellular PD models. Also, these effects are mediated partly by inhibiting activation of the MAPK and PI3K/Akt/$GSK-3{\beta}$ pathways.

향부자(香附子)의 염증 억제 작용을 통한 항파킨슨 효과 (Anti-parkinsonian effect of Cyperi Rhizoma via inhibition of neuroinflammatory action)

  • 김효근;심여문;오명숙
    • 대한본초학회지
    • /
    • 제28권5호
    • /
    • pp.21-28
    • /
    • 2013
  • Objectives : The aim of this study was to investigate the neuroprotective effects and mechanisms of Cyperi Rhizoma extracts (CRE) using in vitro and in vivo models of Parkinson's disease (PD). Methods : We evaluated the neuroprotective effect of CRE against 1-methyl-4-phenylpyridinium (MPP+) toxicity using tyrosine hydroxylase immunohistochemistry (IHC) in primary rat mesencephalic dopaminergic neurons. In addition, the effect of CRE was evaluated in mice PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). For evaluations, C57bl/6 mice were orally treated with CRE 50 mg/kg for 5 days and were injected intraperitoneally with MPTP (20 mg/kg) at 2 h intervals on the last day. To identify the CRE affects on MPTP-induced neuronal loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) and striatum of mice, the behavioral tests and IHC analysis were carried out. Also, we conducted nitric oxide (NO) and tumor necrosis factor-alpha (TNF-${\alpha}$) assay in dopaminergic neurons and IHC using glial markers in SNpc of mice to assess the anti-inflammation effects. Results : In primary mesencephalic culture system, CRE protected dopaminergic cells against $10{\mu}M$ MPP+-induced toxicity at 0.2 and $1.0{\mu}g/mL$. In the behavior tests, CRE treated group showed improved motor deteriorations than those in the MPTP only treated group. CRE significantly protected striatal dopaminergic damage from MPTP-induced neurotoxicity in mice. Moreover, CRE inhibited productions of NO and TNF-${\alpha}$ in dopaminergic culture system and activation of astrocyte and microglia in SNpc of the mice. Conclusion : We concluded that CRE shows anti-parkinsonian effect by protecting dopaminergic neurons against MPP+/MPTP toxicities through anti-inflammatory actions.

PEP-1-HO-1 prevents MPTP-induced degeneration of dopaminergic neurons in a Parkinson's disease mouse model

  • Youn, Jong Kyu;Kim, Dae Won;Kim, Seung Tae;Park, Sung Yeon;Yeo, Eun Ji;Choi, Yeon Joo;Lee, Hae-Ran;Kim, Duk-Soo;Cho, Sung-Woo;Han, Kyu Hyung;Park, Jinseu;Eum, Won Sik;Hwang, Hyun Sook;Choi, Soo Young
    • BMB Reports
    • /
    • 제47권10호
    • /
    • pp.569-574
    • /
    • 2014
  • Heme oxygenase-1 (HO-1) degrades heme to carbon dioxide, biliverdin, and $Fe^{2+}$, which play important roles in various biochemical processes. In this study, we examined the protective function of HO-1 against oxidative stress in SH-SY5Y cells and in a Parkinson's disease mouse model. Western blot and fluorescence microscopy analysis demonstrated that PEP-1-HO-1, fused with a PEP-1 peptide can cross the cellular membranes of human neuroblastoma SH-SY5Y cells. In addition, the transduced PEP-1-HO-1 inhibited generation of reactive oxygen species (ROS) and cell death caused by 1-methyl-4-phenylpyridinium ion ($MPP^+$). In contrast, HO-1, which has no ability to transduce into SH-SY5Y cells, failed to reduce $MPP^+$-induced cellular toxicity and ROS production. Furthermore, intraperitoneal injected PEP-1-HO-1 crossed the blood-brain barrier in mouse brains. In a PD mouse model, PEP-1-HO-1 significantly protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity and dopaminergic neuronal death. Therefore, PEP-1-HO-1 could be a useful agent in treating oxidative stress induced ailments including PD.

MPTP로 유도된 Parkinson's disease 동물 모델에서 항염증효과를 통한 측백엽의 도파민신경보호 효과 (Thuja orientalis leaves extract protects dopaminergic neurons against MPTP-induced neurotoxicity via inhibiting inflammatory action)

  • 박건혁;김효근;주미선;김애정;오명숙
    • 대한본초학회지
    • /
    • 제29권3호
    • /
    • pp.27-33
    • /
    • 2014
  • Objectives : The aim of this study was to investigate the protective effect of extract of Thuja orientalis leaves (TOFE) against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity by inhibition of inflammation in in vitro and in vivo models of Parkinson's disease (PD). Methods : We evaluated the effect of TOFE against lipopolysaccharide (LPS)/1-methyl-4-phenylpyridinium ($MPP^+$) toxicity using nitric oxide (NO) assay, inducible NO synthase and cyclooxygenase 2 western blot, tyrosine hydroxylase and microglia activation immunohistochemistry (IHC) in BV2 cell, primary rat mesencephalic neurons, or C57BL/6 mice. We also evaluated the effect of TOFE in mice PD model induced by MPTP. C57BL/6 mice were treated with TOFE 50 mg/kg for 5 days and were injected intraperitoneally with four administrations of MPTP on the last day. We conducted behavioral tests and IHC analysis to see how TOFE affect MPTP-induced neuronal loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) and striatum (ST) of mice. To assess the anti-inflammation effects, we carried out glial fibrillary acidic protein and macrophage-1 antigen integrin alpha M in IHC in SNpc and ST of mice. Results : In an in vitro system, TOFE decreasesd NO generations in BV2 cells. TOFE protected dopaminergic cells against LPS or $MPP^+$-induced toxicity in primary mesencephalic dopaminergic neurons. In vivo system, TOFE at 50 mg/kg treated group showed improved motor deteriorations than the MPTP only treated group and TOFE significantly protected striatal dopaminergic damage from MPTP-induced neurotoxicity in mice. Moreover, TOFE inhibited activation of astrocyte and microglia in SNpc and ST of the mice. Conclusions : We concluded that TOFE showed anti-parkinsonian effect by protection of dopaminergic neurons against MPTP toxicity through anti-inflammatory actions.