• 제목/요약/키워드: Parkinson's disease(PD)

검색결과 247건 처리시간 0.022초

양손에서 웨어러블 시스템을 이용한 파킨슨병의 정량적 진전 평가 (Quantitative Assessment of Tremor in PD Using a Wearable System on Both Hands)

  • 이홍지;김상경;김한별;전효선;박혜영;정유진;김정환;전범석;박광석
    • 대한의용생체공학회:의공학회지
    • /
    • 제35권4호
    • /
    • pp.81-86
    • /
    • 2014
  • One of the methods for Parkinson's disease(PD) tremor evaluation is the Clinical Tremor Rating Scale(CTRS). However, the method has some limitations that clinician ratings can vary because the scores are subjectively rated. In addition, most researches usually collected data measured on the more affected arm. In this study, we developed a portable wearable system(SNUMAP system) for measuring PD tremor. The SNUMAP system captures 3-dimensional motion using tri-accelerometer and tri-gyroscope on finger and wrist. 40 PD patients participated in resting tremor and postural tremor tasks, while wearing the system on both hands simultaneously. Estimated tremor scores from Leave-One-Out Cross Validation for regression were highly correlated to the average clinician CTRS scores for rest tremor($r^2$ = 0.87, RMSE = 0.48) and postural tremor($r^2$ = 0.82, RMSE = 0.48). Therefore, the quantitative assessment model can improve treatment of PD patients.

Transduced Tat-α-Synuclein Protects against Oxidative Stress In vitro and In vivo

  • Choi, Hee-Soon;Lee, Sun-Hwa;Kim, So-Young;An, Jae-Jin;Hwang, Seok-Il;Kim, Dae-Won;Yoo, Ki-Yeon;Won, Moo-Ho;Kang, Tae-Cheon;Kwon, Hyung-Joo;Kang, Jung-Hoon;Cho, Sung-Woo;Kwon, Oh-Shin;Choi, Jin-Hi;Park, Jin-Seu;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • 제39권3호
    • /
    • pp.253-262
    • /
    • 2006
  • Parkinson's disease (PD) is a common neurodegenerative disorder and is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Although many studies showed that the aggregation of $\alpha$-synuclein might be involved in the pathogenesis of PD, its protective properties against oxidative stress remain to be elucidated. In this study, human wild type and mutant $\alpha$-synuclein genes were fused with a gene fragment encoding the nine amino acid trans activator of transcription (Tat) protein transduction domain of HIV-l in a bacterial expression vector to produce a genetic in-frame WT Tat-$\alpha$-synuclein (wild type) and mutant Tat-a-synucleins (mutants; A30P and A53T), respectively, and we investigated the protective effects of wild type and mutant Tat-$\alpha$-synucleins in vitro and in vivo. WT Tat-$\alpha$-synuclein rapidly transduced into an astrocyte cells and protected the cells against paraquat induced cell death. However, mutant Tat-$\alpha$-synucleins did not protect at all. In the mice models exposed to the herbicide paraquat, the WT Tat-$\alpha$-synuclein completely protected against dopaminergic neuronal cell death, whereas mutants failed in protecting against oxidative stress. We found that these protective effects were characterized by increasing the expression level of heat shock protein 70 (HSP70) in the neuronal cells and this expression level was dependent on the concentration of transduced WT Tat-$\alpha$-synuclein. These results suggest that transduced Tat-$\alpha$-synuclein might protect cell death from oxidative stress by increasing the expression level of HSP70 in vitro and in vivo and this may be of potential therapeutic benefit in the pathogenesis of PD.

$MPP^+$로 유도된 SH-SY5Y신경세포 사멸에 대한 고분자성분제거 봉독약침액의 신경보호 효과 연구 (Neuroprotective Effects of Bee Venom, which Removes High Molecular Elements against $MPP^+$-induced Human Neuroblastoma SH-SY5Y Cell Death)

  • 배광록;두아름;김승남;박지연;박히준;이혜정;권기록
    • 대한한방내과학회지
    • /
    • 제31권2호
    • /
    • pp.254-263
    • /
    • 2010
  • Objectives : The neuroprotective effects of bee venom (BV) have been demonstrated in many studies, but bee venom has many side effects. So we used sweet bee venom (SBV), which has high molecular elements removed to reduce the side effects. I examined the neuroprotective effect of sweet bee venom in 1-methyl-4-phenylpyridine ($MPP^+$)-induced human neuroblastoma SH-SY5Y cells. Methods : To observe the possible toxicity of SBV itself, SH-SY5Y cells were treated with SBV in various concentrations for 3 h and $MPP^+$ in concentrations (1 and 5mM) for 24h. To investigate the protective effect of SBV against $MPP^+$ toxicity, SH-SY5Y cells were pretreated with vehicle or nontoxic concentrations of SBV for 3h and the cells were not washed, followed by incubation with respective concentrations of SBV and 1 mM $MPP^+$ for 24h. To investigate the protective effect of SBV against $MPP^+$ toxicity, SH-SY5Y cells were pretreated with vehicle or nontoxic concentrations of SBV for 3h and the cells were not washed, followed by incubation with respective of SBV(0.5%), 1 mM $MPP^+$, 5uM AKT inhibitor(LY984002) and 10uM ERK inhibitor(PD98059) for 24 h. The protective effect was measured by cell viability assay. To investigate the degree of apoptosis, caspase-3 enzyme activity was measured in control, $MPP^+$, SBV+$MPP^+$. Results : SBV (0.5%) pretreatment protected the SH-SY5Y cells against $MPP^+$-induced apoptotic cell death. The cell viability was higher in the SH-SY5Y cells that were pretreated with vehicle or nontoxic concentrations of SBV than those not pretreated. The caspase-3 activity was lower in the pretreated groups than these not pretreated. ERK and AKT enzymes have a role in the neuroprotective effects of the sweet bee venom. Conclusions : The results demonstrate that SBV has a protective effect on dopaminergic neurons against $MPP^+$ toxicity. This data suggest that SBV could be a potential therapeutic tool for neurodegenerative diseases such as Parkinson's disease(PD).

Effect of Synthetic CaM and NFAT Oligodeoxynucleotide on MPP+-Stimulated Mesencephalic Neurons

  • Jihyun Park;Kyung Mi Jang
    • Journal of Interdisciplinary Genomics
    • /
    • 제5권2호
    • /
    • pp.35-41
    • /
    • 2023
  • Background: Ca2+ signaling plays a vital role in neuronal signaling and altered Ca2+ homeostasis in Parkinson's disease (PD). Overexpression of αSYN significantly promote the Ca2+-Calmodulin (CaM) activity and subsequent nuclear translocation of nuclear factor of activated T cells (NFAT) transcription factor in dopaminergic neurons of midbrain. However, the exact role of Ca2+-CaM and NFAT in PD pathology is yet to be elucidated. Methods: We designed the CaM-NFAT-oligodeoxynucleotide (ODN), a synthetic short DNA containing complementary sequence for NFAT transcription factor and CaM mRNA. Then, the effect of CaM-NFAT-ODN on 1-methyl-4-phenylpyridinium (MPP+)-mediated neurotoxicity was investigated in mimic PD model in vitro. Results: First, the expression of αSYN and CaM was strongly increased in substantia nigra (SN) of PD and the expression of tyrosine hydroxylase (TH) was strongly increased in control SN. Additionally, the expression of apoptosis marker proteins was strongly increased in SN of PD. Transfection of CaM-NFAT-ODN repressed CaM and pNFAT, the target genes of this ODN in rat embryo primary mesencephalic neurons. It also reduced ERK phosphorylation, a downstream target of these genes. These results demonstrated that CaM-NFAT-ODN operated successfully in rat embryo primary mesencephalic neurons. Transfection of CaM-NFAT-ODN repressed TH reduction, αSYN accumulation, and apoptosis by MPP+-induced neurotoxicity response through Ca2+ signaling and mitogen-activated protein kinases (MAPK) signaling. Conclusion: Synthetic CaM-NFAT-ODN has substantial therapeutic feasibility for the treatment of neurodegenerative diseases.

천마의 흑질 내 도파민성 신경세포 보호 효과에 대한 단백체학적 분석 (Proteomic Analysis for Neuroprotective Effect of Gastrodia elata Blume in the Substantia Nigra of Mice)

  • 배창환;김희영;이한울;서지은;윤동학;김승태
    • Korean Journal of Acupuncture
    • /
    • 제39권4호
    • /
    • pp.142-151
    • /
    • 2022
  • Objectives : Parkinson's disease (PD) is a neurodegenerative disorder threatening the quality of life and highly occurred in over 65 years old. Gastrodia elata Blume (GEB), a traditional medicine used for the treatment of headache and convulsion, has been reported to have neuroprotective effect. This study was designed to investigate the neuroprotective effect of GEB and the proteomic changes in the substantia nigra (SN) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Methods : Male eleven-week-old C57BL/6 mice were intraperitoneally injected with 30 mg/kg of MPTP at 24-h intervals for 5 days. Two hours after the daily MPTP injection, the mice were orally administered 800 mg/kg of GEB extract, which continued for 7 days beyond the MPTP injections, for a total of 12 consecutive days. Two hours after the final GEB administration, the brain samples were collected, and dopaminergic neuronal death and proteomic changes in the SN were evaluated. Results : GEB prevented the MPTP-induced dopaminergic neuronal death and regulated the expression of 11 proteins including thimet oligopeptidase, T-complex protein 1, glycine tRNA ligase, and pyruvate kinase isozymes M1. Conclusions : GEB prevents MPTP-induced dopaminergic neuronal death by regulating the proteins in the SN.

파킨슨병 환자의 보행동결 검출을 위한 시간영역 알고리즘 (Time Domain of Algorithm for The Detection of Freezing of Gait(FOG) in Patients with Parkinson's Disease)

  • 박상훈;권유리;김지원;엄광문;이재호;이정환;이선민;고성범
    • 대한의용생체공학회:의공학회지
    • /
    • 제34권4호
    • /
    • pp.182-188
    • /
    • 2013
  • This study aims to develop a practical algorithm which can detect freezing of gait(FOG) in patients with Parkinson's disease(PD). Eighteen PD patients($68.8{\pm}11.1yrs.$) participated in this study, and three($68.7{\pm}4.0yrs.$) of them showed FOG. We suggested two time-domain algorithms(with 1-axis or 3-axes acceleration signals) and compared them with the frequency-domain algorithm in the literature. We measured the acceleration of left foot with a 3-axis accelerometer inserted at the insole of a shoe. In the time-domain method, the root-mean-square(RMS) acceleration was calculated in a moving window of 4s and FOG was defined as the periods during which RMS accelerations located within FOG range. The parameters in each algorithm were optimized for each subject using the simulated annealing method. The sensitivity and specificity were same, i.e., $89{\pm}8%$ for the time-domain method with 1-axis acceleration and were $91{\pm}7%$ and $90{\pm}8%$ for the time-domain method with 3-axes acceleration, respectively. Both performances were better in the time-domain methods than in the frequency-domain method although the results were statistically insignificant. The amount of calculation in the time-domain method was much smaller than in the frequency-domain method. Therefore it is expected that the suggested time domain algorithm would be advantageous in the systematic implementation of FOG detection.

Oxidative modification of human ceruloplasmin induced by a catechol neurotoxin, salsolinol

  • Kim, Seung-Sub;Kang, Jae Yoon;Kang, Jung Hoon
    • BMB Reports
    • /
    • 제49권1호
    • /
    • pp.45-50
    • /
    • 2016
  • Salsolinol (SAL), a compound derived from dopamine metabolism, is the most probable neurotoxin involved in the pathogenesis of Parkinson's disease (PD). In this study, we investigated the modification and inactivation of human ceruloplasmin (hCP) induced by SAL. Incubation of hCP with SAL increased the protein aggregation and enzyme inactivation in a dose-dependent manner. Reactive oxygen species scavengers and copper chelators inhibited the SAL-mediated hCP modification and inactivation. The formation of dityrosine was detected in SAL-mediated hCP aggregates. Amino acid analysis post the exposure of hCP to SAL revealed that aspartate, histidine, lysine, threonine and tyrosine residues were particularly sensitive. Since hCP is a major copper transport protein, oxidative damage of hCP by SAL may induce perturbation of the copper transport system, which subsequently leads to deleterious conditions in cells. This study of the mechanism by which ceruloplasmin is modified by salsolinol may provide an explanation for the deterioration of organs under neurodegenerative disorders such as PD. [BMB Reports 2016; 49(1): 45-50]

Fishing for synucleinopathy models

  • Noor, Suzita Mohd;Norazit, Anwar
    • Fisheries and Aquatic Sciences
    • /
    • 제25권3호
    • /
    • pp.117-139
    • /
    • 2022
  • Synucleinopathies such as Parkinson's disease (PD) are incurable neurodegenerative conditions characterised by the abnormal aggregation of α-synuclein protein in neuronal cells. In PD, fibrillary synuclein aggregation forms Lewy bodies and Lewy neurites in the substantia nigra and cortex on the brain. Dementia with Lewy bodies and multiple system atrophy are also associated with α-synuclein protein abnormalities. α-synuclein is one of three synuclein proteins, and while its precise function is still unknown, one hypothesis posits that α-synuclein propagates from the enteric nervous system through the vagus nerve and into the brain, resulting in synucleinopathy. Studies on synucleinopathies should thus encompass not only the central nervous system but must necessarily include the gut and microbiome. The zebrafish (Danio rerio) is a well-established model for human neuronal pathologies and have been used in studies ranging from genetic models of hereditary disorders to neurotoxin-induced neurodegeneration as well as gut-brain-axis studies. There is significant genetic homology between zebrafish and mammalian vertebrates which is what makes the zebrafish so amenable to modelling human conditions but in the case of synucleinopathies, the zebrafish notably does not possess an α-synuclein homolog. Synuclein orthologs are present in the zebrafish however, and transgenic zebrafish that carry human α-synuclein have been generated. In addition, the zebrafish is a highly advantageous model and ideal replacement for reducing the use of mammalian models. This review discusses the application of the zebrafish as a model for synucleinopathies in efforts to further understand synuclein function and explore therapeutic strategies.

Salsolinol, a Tetrahydroisoquinoline Catechol Neurotoxin, Induces Human Cu,Zn-superoxidie Dismutase Modificaiton

  • Kang, Jung-Hoon
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.684-689
    • /
    • 2007
  • The endogenous neurotoxin, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), has been considered a potential causative factor for the pathogenesis of Parkinson's disease (PD). In the present study, we examined the pattern of human Cu,Zn-superoxide dismutase (SOD) modification elicited by salsolinol. When Cu,Zn-SOD was incubated with salsolinol, some protein fragmentation and some higher molecular weight aggregates were occurred. Salsolinol led to inactivation of Cu,Zn-SOD in a concentration-dependent manner. Free radical scavengers and catalase inhibited the salsolinol-mediated Cu,Zn-SOD modificaiton. Exposure of Cu,Zn-SOD to salsolinol led also to the generation of protein carbonyl compounds. The deoxyribose assay showed that hydroxyl radicals were generated during the oxidation of salsolinol in the presence of Cu,Zn-SOD. Therefore, the results indicate that free radical may play a role in the modification and inactivation of Cu,Zn-SOD by salsolinol.

Modification of Cu,Zn-Superoxide Dismutase by Oxidized Catecholamines

  • Kang, Jung-Hoon
    • BMB Reports
    • /
    • 제37권3호
    • /
    • pp.325-329
    • /
    • 2004
  • Oxidation of catecholamines may contribute to the pathogenesis of Parkinson's disease (PD). The effect of the oxidized products of catecholamines on the modification of Cu,Zn-superoxide dismutase (SOD) was investigated. When Cu,Zn-SOD was incubated with the oxidized 3,4-dihydroxyphenylalanine (DOPA) or dopamine, the protein was induced to be aggregated. The deoxyribose assay showed that hydroxyl radicals were generated during the oxidation of catecholamines in the presence of copper ion. Radical scavengers, azide, N-acetylcysteine, and catalase inhibited the oxidized catecholamine-mediated Cu,Zn-SOD aggregation. Therefore, the results indicate that free radicals may play a role in the aggregation of Cu,Zn-SOD. When Cu,Zn-SOD that had been exposed to catecholamines was subsequently analyzed by an amino acid analysis, the glycine and histidine residues were particularly sensitive. These results suggest that the modification of Cu,Zn-SOD by oxidized catecholamines might induce the perturbation of cellular antioxidant systems and led to a deleterious cell condition.