• Title/Summary/Keyword: Parking system

Search Result 580, Processing Time 0.032 seconds

Development of UHF Band Tag Antenna using Radio Frequency Identification Multipurpose Complex Card (RFID 다기능 복합 카드용 UHF 대역 소형 태그 안테나 개발)

  • Byun, Jong-Hun;Sung, Bong-Geun;Choi, Eun-Jung;Ju, Dae-Geun;Yoo, Dae-Won;Cho, Byung-Lok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1452-1458
    • /
    • 2009
  • In this paper, Our proposed Multipurpose Complex Card UHF band RFID small-size Tag antenna. Multi purpose Complex Card UHF band RFID small-size Tag antenna that is to minimize the low efficiency of RFID Tag Read Range that generates space limitation and a conductor surrounded by inducing fingerpring system with dual(HF, UHF) Card is presented. Our proposed UHF band RFID small-size Tag antenna is for the Multipurpose Complex Card that is mounted on the fingerpring system as well as the HF Tag. It also enables to minimize and facilitates Tag chip matching by adjusting Tapered, Meander line and Loop structure. Given the card substance properties and periphery circuit, the proposed small-size Tag antenna, in this report, is designed with PET film with size of $50{\times}15mm^2$. The RFID small-size Tag method for measurements is used by EPCglobal Static Test instrument in Anechoic Chamber, which is tested with dual Card, within the car and in wallet. It is found that Read Range is 3.8m from the EPCglobal Static Test, Maximum Read Range within the car from the field test results in 7.6m. Proposed Tag antenna is will be used in the parking control security system.

Semi-Supervised Learning Based Anomaly Detection for License Plate OCR in Real Time Video

  • Kim, Bada;Heo, Junyoung
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.113-120
    • /
    • 2020
  • Recently, the license plate OCR system has been commercialized in a variety of fields and preferred utilizing low-cost embedded systems using only cameras. This system has a high recognition rate of about 98% or more for the environments such as parking lots where non-vehicle is restricted; however, the environments where non-vehicle objects are not restricted, the recognition rate is about 50% to 70%. This low performance is due to the changes in the environment by non-vehicle objects in real-time situations that occur anomaly data which is similar to the license plates. In this paper, we implement the appropriate anomaly detection based on semi-supervised learning for the license plate OCR system in the real-time environment where the appearance of non-vehicle objects is not restricted. In the experiment, we compare systems which anomaly detection is not implemented in the preceding research with the proposed system in this paper. As a result, the systems which anomaly detection is not implemented had a recognition rate of 77%; however, the systems with the semi-supervised learning based on anomaly detection had 88% of recognition rate. Using the techniques of anomaly detection based on the semi-supervised learning was effective in detecting anomaly data and it was helpful to improve the recognition rate of real-time situations.

Infrastructure-independent Navigation System Using Embedded Map and Built-in Sensors in the Ubiquitous Parking Management (유비쿼터스 주차관리 시스템에서 내장 맵 및 센서를 이용한 인프라 독립 네비게이션 시스템)

  • Elijorde, Frank I.;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.13 no.5
    • /
    • pp.93-104
    • /
    • 2012
  • Significant advancements in technology enhanced the reliability of navigation systems that are in use today. The GPS is the most widely used technique for satellite-based location estimation. However, systems based on GPS can only be accurate in providing location data when there is a clear view of the satellites. This paper proposes a self-contained navigation system that does not depend on any tracking infrastructure. Using the built-in sensors of a smartphone and a self-contained map, we implemented an accurate car locator. Evaluation results show that our proposed system outperforms GPS in providing accurate car location assistance.

Dynamics of a Pico Slider during the Ramp Loading Process (Ramp Loading 피코 슬라이더의 거동 해석)

  • Rhim Yoon-Chul;Kim Bum-Joon;Cho Kwang-Pyo
    • Tribology and Lubricants
    • /
    • v.20 no.6
    • /
    • pp.322-329
    • /
    • 2004
  • Recently, a load/unload(L/UL) system is adopted to the hard disk drive(HDD) due to its advantages such as lower power consumption, larger data zone, simpler fabrication of disk due to no bumped parking zone, and rarer contact between slider and media. An analysis of the transient motion for the slider is very important to design an air bearing surface(ABS) of the slider to secure the stable performance of the system. During the L/UL process, however, there are several issues occurred such as contact or collision between slider and media. Sometimes this will cause the system failure. In this study, the dynamics of a pico slider during the loading process are investigated through numerical simulation using FEM analysis and experiment. Ramp profile and angular velocity of the swing arm actuator are very important parameters for the design of L/UL system to avoid collision between slider and disk.

A Study on Application for Deck Plate Substitute Type Wood System Form of Frame Type Parking Lot (골조형 주차장의 Deck Plate 대체형 목제 시스템 거푸집 적용성 연구)

  • Shin, Yong-Jae;Shin, Woon-Sik;Heo, Jae-Won;Lim, Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.123-126
    • /
    • 2006
  • Existing Deck Plate for a one of system forms, there is various advantage and application actual results increasing rapidly. But design of deck is depending on engineering data collections or design data on deck manufacture ordinarily. When construct, is responsible for deflection occurrence, And Because confirmation of crack occurrence region is impossible, there is difficulty of repair, reinforcement about crack and water leakage. According to got following conclusion as result that economic performance, preservation administration and repair reinforcement develops easy using steel truss snap tie by wedge pin on coating plywood that is slab Panel Wood System Form method of construction there is Deck Plate's advantage. (1) In stab lower part is exposed disjointing in which a criminal is fastened to be interrogated after construction acceptance and repair, reinforcement of crack is possible (2) Construction cost curtailment effect of about 29.2% than conventional type and about 10% than deck plate (3) Construction period reduction of about 3 day than conventional type and about 0.3 day than deck plate (4) Labor curtailment effect more than about $29{\sim}50%$ from conventional type

  • PDF

Attitude control in spacecraft orbit-raising using a reduced quaternion model

  • Yang, Yaguang
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.427-441
    • /
    • 2014
  • Orbit-raising is an important step to place spacecraft from parking orbits into working orbits. Attitude control system design is crucial in the success of orbit-raising. Several text books have discussed this design and focused mainly on the traditional methods based on single-input single-output (SISO) transfer function models. These models are not good representations for many orbit-raising control systems which have multiple thrusters and each thruster has impact on the attitude defined by all outputs. Only one published article is known to use a more suitable multi-input multi-output (MIMO) Euler angle model in spacecraft orbit-raising attitude control system design. In this paper, a quaternion based MIMO model for the orbit-raising attitude control system design is proposed. The advantages of using quaternion based model for orbit-raising control system designs are (a) there is no need for mathematical transformations because the attitude measurements are normally given by quaternion, (b) quaternion based model does not depend on rotational sequences, which reduces the chance of human errors, and (c) the singular point of reduced quaternion model is the farthest from the operational point where linearization is performed. We will show that performance of quaternion model based design will be as good as the performance of Euler angle model based design for orbit-raising problem.

Application of numerical simulation for the analysis and interpretation of pile-anchor system failure

  • Saleem, Masood
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.689-707
    • /
    • 2015
  • Progressive increase in population causing land scarcity, which is forcing construction industry to build multistory buildings having underground basements. Normally, basements are constructed for parking facility. This research work evaluates important factors which have caused the collapse of pile-anchor system at under construction five star hotel. 21 m deep excavation is carried out, to have five basements, after installation of 600 mm diameter cast in-situ contiguous concrete piles at plot periphery. To retain piles and backfill, soil anchors are installed as pit excavation is proceeded. Before collapse, anchors are designed by federal highway administration procedure and four anchor rows are installed with three strands per anchor in first row and four in remaining. However, after collapse, system is modeled and analyzed in plaxis using mohr-coulomb method. It is investigated that in-appropriate evaluation of soil properties, additional surcharge loads, lesser number of strands per anchor, shorter grouted body length and shorter pile embedment depth caused large deformations to occur which governed the collapse of east side pile wall. To resume work, old anchors are assumed to be standing at one factor of safety and then system is analyzed using finite element approach. Finally, it is concluded to use four strands per anchor in first new row and five strands in remaining three with increase in grouted and un-grouted body lengths.

Privacy-Preservation Using Group Signature for Incentive Mechanisms in Mobile Crowd Sensing

  • Kim, Mihui;Park, Younghee;Dighe, Pankaj Balasaheb
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1036-1054
    • /
    • 2019
  • Recently, concomitant with a surge in numbers of Internet of Things (IoT) devices with various sensors, mobile crowdsensing (MCS) has provided a new business model for IoT. For example, a person can share road traffic pictures taken with their smartphone via a cloud computing system and the MCS data can provide benefits to other consumers. In this service model, to encourage people to actively engage in sensing activities and to voluntarily share their sensing data, providing appropriate incentives is very important. However, the sensing data from personal devices can be sensitive to privacy, and thus the privacy issue can suppress data sharing. Therefore, the development of an appropriate privacy protection system is essential for successful MCS. In this study, we address this problem due to the conflicting objectives of privacy preservation and incentive payment. We propose a privacy-preserving mechanism that protects identity and location privacy of sensing users through an on-demand incentive payment and group signatures methods. Subsequently, we apply the proposed mechanism to one example of MCS-an intelligent parking system-and demonstrate the feasibility and efficiency of our mechanism through emulation.

Ramp Activity Expert System for Scheduling and Co-ordination (공항의 계류장 관리 스케줄링 및 조정을 위한 전문가시스템)

  • Jo, Geun-Sik;Yang, Jong-Yoon
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.1
    • /
    • pp.61-67
    • /
    • 1998
  • In this paper, we have described the Ramp Activity Coordination Expert System (RACES) which can solve aircraft parking problems. RACES includes a knowledge-based scheduling problem which assigns every daily arriving and departing flight to the gates and remote spots with the domain specific knowledge and heuristics acquired from human experts. RACES processes complex scheduling problem such as dynamic inter-relations among the characteristics of remote spots/gates and aircraft with various other constraints, for example, custome and ground handling factors at an airport. By user-driven modeling for end users and knowledge-driven near optimal scheduling acquired from human experts, RACES can produce parking schedules of aircraft in about 20 seconds for about 400 daily flights, whereas it normally takes about 4 to 5 hours by human experts. Scheduling results in the form of Gantt charts produced by the RACES are also accepted by the domain experts. RACES is also designed to deal with the partial adjustment of the schedule when unexpected events occur. After daily scheduling is completed, the messages for aircraft changes and delay messages are reflected and updated into the schedule according to the knowledge of the domain experts. By analyzing the knowledge model of the domain expert, the reactive scheduling steps are effectively represented as rules and the scenarios of the Graphic User Interfaces (GUI) are designed. Since the modification of the aircraft dispositions such as aircraft changes and cancellations of flights are reflected to the current schedule, the modification should be notified to RACES from the mainframe for the reactive scheduling. The adjustments of the schedule are made semi-automatically by RACES since there are many irregularities in dealing with the partial rescheduling.

  • PDF

Robust Model Based Fault Detection of EPB System for Varying Temperature (온도변화에 강인한 EPB 시스템의 모델기반 고장검출 방법)

  • Moon, Byoung-Joon;Park, Chong-Kug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.26-30
    • /
    • 2009
  • In this paper, a robust model based fault detection for varying temperature is proposed, To develop a robust force estimation model, it needs temperature information because the force sensor's output is affected by a temperature variation. If an EPB system does not include a temperature sensor, the model has a much larger error than an EPB system with a built-in temperature sensor. Therefore, the temperature is estimated by using Ohm's law. The force model is applied with a motor current, battery voltage, operation mode, and the estimated temperature to detect a force sensor's abnormal signal fault. The residual is calculated by comparing the value of the measured force and the estimated force. Fault information is collected by using the output of the evaluated residual with the adaptive thresholds. A proposed robust model based fault detection for varying temperature was verified by HILS (Hardware in the Loop Simulation).