무선 센서네트워크는 효율적인 자료처리 및 유비쿼터스 시스템 구현을 위해 여러 응용에서 사용되고 있다. 그러나 무선센서네트워크에 기반 한 최근 주차관리시스템 연구에서는 적응형 센싱이나 효율적인 자료처리 기법은 거의 고려되지 않고 있다. 주차관리응용에서의 성능은 이러한 분산된 컴퓨팅장비들의 효율적인 구현에 영향을 받는다. 이 논문은 주차관리 유비쿼터스 네트워크 시스템을 위해 퍼지 무선센서를 이용한 적응형 센싱기법을 제시한다. 효율적인 주차탐색을 위해 퍼지추론시스템이 센서에 탑재된다. 또한 자동차 주차공간의 환경변화에 적응을 위해 새로운 갈을 각 센서에 무선으로 전송하는 규칙기반 적응형 모듈을 제시한다. 실험결과 제안한 퍼지기반 무선센서가 일반적인 무선센서에 의해 수집하는 방법에 비해 우수한 처리율과 적은 지연시간을 보였다.
본 논문에서는 지능형 주차검지센서에 장착하기 위한 ISM-대역(중심주파수 447 MHz) 소형화된 역 F 안테나를 제안하였다. 먼저 제한된 크기를 가진 지능형 주차검지센서 모듈(72 mm × 70 mm)내에 안테나를 내장하기 위해, ISM-대역의 낮은 주파수 447 MHz(파장 λ : 670mm)에서 폴디드 형태의 역 F 안테나를 설계하였다. 그 결과, ISM 대역(중심주파수 447 MHz)에서 공진하며, -10 dB 대역폭 13 MHz(2.9%)로 적합한 특성을 얻었다. 또한, 수직·수평소자에 의한 H-plane 패턴은 null point가 제거된 전방향성 패턴을 나타내며, E-plane은 특정 방향으로 지향성을 가지므로, 주차장에서의 차량 관리용 안테나로써 적합함을 확인하였다.
In this paper, a robust model based fault detection for varying temperature is proposed, To develop a robust force estimation model, it needs temperature information because the force sensor's output is affected by a temperature variation. If an EPB system does not include a temperature sensor, the model has a much larger error than an EPB system with a built-in temperature sensor. Therefore, the temperature is estimated by using Ohm's law. The force model is applied with a motor current, battery voltage, operation mode, and the estimated temperature to detect a force sensor's abnormal signal fault. The residual is calculated by comparing the value of the measured force and the estimated force. Fault information is collected by using the output of the evaluated residual with the adaptive thresholds. A proposed robust model based fault detection for varying temperature was verified by HILS (Hardware in the Loop Simulation).
This paper proposes a method for detecting the front side of vehicles. The method can find the car side with a license plate even with complicated and cluttered backgrounds. A convolutional neural network (CNN) is used to solve the detection problem as a unified framework combining feature detection, classification, searching, and localization estimation and improve the reliability of the system with simplicity of usage. The proposed CNN structure avoids sliding window search to find the locations of vehicles and reduces the computing time to achieve real-time processing. Multiple responses of the network for vehicle position are further processed by a weighted clustering and probabilistic threshold decision method. Experiments using real images in parking lots show the reliability of the method.
본 논문은 최근 물체탐지 분야에서 실시간 물체 탐지 알고리즘으로 주목을 받고 있는 YOLOv2(You Only Look Once) 알고리즘을 이용하여 밀집 영역에 주차되어 있는 자동차 탐지 방법을 제안한다. YOLO의 컨볼루션 네트워크는 전체 이미지에서 한 번의 평가를 통해서 직접적으로 경계박스들을 예측하고 각 클래스의 확률을 계산하고 물체 탐지 과정이 단일 네트워크이기 때문에 탐지 성능이 최적화 되며 빠르다는 장점을 가지고 있다. 기존의 슬라이딩 윈도우 접근법과 R-CNN 계열의 탐지 방법은 region proposal 방법을 사용하여 이미지 안에 가능성이 많은 경계박스를 생성하고 각 요소들을 따로 학습하기 때문에 최적화 및 실시간 적용에 어려움을 가지고 있다. 제안하는 연구는 YOLOv2 알고리즘을 적용하여 기존의 알고리즘이 가지고 있는 물체 탐지의 실시간 처리 문제점을 해결하여 실시간으로 지상에 있는 자동차를 탐지하는 방법을 제안한다. 제안하는 연구 방법의 실험을 위하여 오픈소스로 제공되는 Darknet을 사용하였으며 GTX-1080ti 4개를 탑재한 Deep learning 서버를 이용하여 실험하였다. 실험결과 YOLO를 활용한 자동차 탐지 방법은 기존의 알고리즘 보다 물체탐지에 대한 오버헤드를 감소 할 수 있었으며 실시간으로 지상에 존재하는 자동차를 탐지할 수 있었다.
Kim, Hyun-Yul;Lee, Seung-Kyu;Lee, Geon-Wha;Park, Young-rok
한국정보전자통신기술학회논문지
/
제7권4호
/
pp.212-222
/
2014
In the current study, the authors propose a method for extracting license plate regions by means of a neural network trained to output the plate's center of gravity. The method is shown to be effective. Since the learning pattern presentation positions are defined by random numbers, a different pattern is submitted to the neural network for learning each time, which enables it to form a neural network with high universality of coverage. The article discusses issues of the optimal learning surface for a license plate covered by the learning pattern, the effect of suppression learning of the number and pattern enlargement/reduction and of concentration value conversion. Results of evaluation tests based on pictures of 595 vehicles taken at an under-ground parking garage demonstrated detection rates of 98.5%, 98.7%, and 100%, respectively.
The 5th International Conference on Construction Engineering and Project Management
/
pp.634-639
/
2013
The aim of the study is to develop the 3D visualization of Building Information Model and integrated 4D model for optimization of resources in the construction project. This study discuss the process of methodology and creation of 4D model of the project and simulate it to monitor the workflow at the site. Different stages of the construction process and activities are generated by using Revit and MS Project. MS project has been used for creation of the schedules and these are linked with the Revit for 3D modeling. The time used as the fourth dimension and 4D model created by using Navisworks Time liner software. Narges shopping center is presented as a case study to realize the actual uses and benefits of Building Information Model (BIM). Narges shopping mall is located in Tehran, Iran. As a part of Hekmat master plan, Narges shopping center is an 11 stores building with a total area of 30000 Sq.m. This shopping and entertainment center is comprised of 150 retails and two multi-use public halls with a capacity of 400 persons each and underground parking with total 400 parking space. The main purpose of architecture was to create an urban public center along with its revolving, spiral like form and an ever changing continuous façade by means of different colors, materials, which is in harmony with the other building of the master plan. The approximate cost of the project is $17 million and duration of the project schedule is 30 months. The developed Building Information Model enabled us to identify the potential collisions or clashes between various structural and architectural systems. 4D model has been used for limiting the interaction between subcontractors installing the different systems so rework could be avoided and productivity maximized. It is also observed that the utility of BIM for construction stimulation and clash detection is the best suitable method. Clash detection before the implementation of work is highly recommended to avoid rework.
최근 톨게이트의 자동요금징수시스템 (ETC, Electronic Toll Collection System), 버스안내시스템, 주차관리 시스템 등 다양한 분야에서 근거리 무선통신 (DSRC, Dedicated Short Range Communication) 기술이 활용되고 있다. 본 논문에서는 이를 활용한 교통정보시스템을 설계하였다. 기존 차량감지기를 이용한 지점검지 기반의 교통정보시스템이 수집과 제공이 별도로 운영되는 시스템인 반면, 근거리무선통신을 이용한 구간검지 기반의 교통정보시스템은 기지국과 차량 단말기간 통신을 통하여 교통정보 수집 및 제공이 가능하다. 차량감지기가 지점정보를 구간교통정보로 가공하기 때문에 지점 통과속도가 구간평균속도로 변환되는 과정에서 혼잡 상황의 속도가 높게 나타난다. 소통상태가 악화되었을 경우, 차량감지기가 근거리 무선통신에 비해 통행속도가 높게 나타난다. 특히, 근거리 무선통신을 이용한 교통정보시스템의 통행속도의 데이터별 편차가 크게 감소하였고, 돌발상황 검지 및 교통상황을 신속하게 파악할 수 있는 것으로 분석되었다.
자동차 번호판 검출 자동화(ALPD: Automatic License Plate Detection) 시스템은 효율적인 교통 관제를 위한 핵심 기술이며, 통행료 지불 시스템, 주차장 및 교통 관리와 같은 많은 응용에 사용되어 업무의 효율을 높이고 있다. 최근까지의 ALPD에 관한 연구에서는 주로 영상처리를 위해 설계된 기존의 특징들을 추출하여 번호판 검출에 사용해왔다. 이러한 종래의 방법은 속도에 이점은 있으나, 다양한 환경 변화에 따른 성능 저하를 보였다. 본 논문에서는 전반적인 성능을 향상시키기 위하여 Faster R-CNN과 CNN으로 구성되는 두 단 구조를 활용하는 방법을 제안한다. 이를 통해 동작 속도를 향상시키고, 다양한 환경변화에 강인하도록 구성하였다. 첫 번째 단계에서는 Faster R-CNN을 적용하여 번호판 영역 후보영역들을 선별하며, 두 번째 단에서 CNN을 활용하여 후보영역들 중에서 False Positives를 제거함으로써 검출률을 향상시켰다. 이를 통해 ZFNet을 기반으로 하여 99.94%의 검출률을 달성하였다. 또한 평균 운용시간은 80ms/image로써 빠르고 강인한 실시간 번호판 검출 시스템을 구현할 수 있었다.
This paper proposes a method to detect LP(License Plate) of vehicles in indoor and outdoor parking lots. In restricted environment, there are many conventional methods for detecting LP. But, it is difficult to detect LP in natural and complex scenes with background clutters because several patterns similar with text or LP always exist in complicated backgrounds. To verify the performance of LP text detection in natural images, we apply MB-LGP feature by combining with ensemble machine learning algorithm in purpose of selecting optimal features of small number in huge pool. The feature selection is performed by adaptive boosting algorithm that shows great performance in minimum false positive detection ratio and in computing time when combined with cascade approach. MSER is used to provide initial text regions of vehicle LP. Throughout the experiment using real images, the proposed method functions robustly extracting LP in natural scene as well as the controlled environment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.