This paper presents a stator winding fault diagnosis technique of induction motor on the PC - based virtual instrumentation system designed using the graphical programming language LabVIEW. This method collects the 3-phase current signals using the current probe amplifier and PXI/DAQ system then the preprocessing removes the noise using LPF, after then this method transforms the stator current to Park's vector and obtains the each Park's Vector pattern and detects stator winding fault by comparing the obtained faulted pattern with the healthy pattern. This proposed LabVIEW based diagnosis system is applied to the 3 phase 1 hp induction motor and obtained the reasonable results under no load condition. The test results give us the possibility a simple and realistic on-line winding fault diagnosis system.
A real m $\times$ n matrix A is semipositive (SP) if there is a vector x $\geq$ 0 such that Ax > 0, inequalities being entrywise. A is minimally semipositive (MSP) if A is semipositive and no column deleted submatrix of A is semipositive. We give a necessary and sufficient condition for the sign pattern matrix with n positive entries to be minimally semipositive.
Recently, research on various font designs has been actively conducted to deliver effective emotional information in a digital environment. In this study, we propose a Hangul font outline vector modification algorithm that effectively conveys sensitivity according to weather information and can be transformed immediately. The algorithm performs a series of transformations: sets outlines according to design pattern templates, calculates the glyph's position to reflect physical rules, splits outline segments into smaller sizes and deforms the outlines. Through this, we could create several vector font designs such as humidity, cloud, wind, and snow. The usability evaluation was close to good, so it can be used in diverse ways if we improve readability and effective design expression.
In recent years, a pattern recognition method has been widely used by researchers for fault diagnoses of mechanical systems. A pattern recognition method determines the soundness of a mechanical system by detecting variations in the system's vibration characteristics. Hidden Markov model has recently been used as pattern recognition methods in various fields. In this study, a HMM method for the fault diagnosis of a mechanical system is introduced, and a rotating machine with mass unbalance is selected for fault diagnosis. Moreover, a diagnosis procedure to identity the size of a defect is proposed in this study.
In this paper, an auto-diagnosis method of rotor bar fault for small induction motor is suggested. Usually FFT of stator currents are given the good results, but to detect the fault, slip is needed for calculating the feature frequency. The slip is varied as the load is changed. So in this paper, some alternative method for estimating the load is suggested. This method is based on the Park's vector pattern. The magnitudes of the feature frequency are compared with the threshhold that is predefined in the bounded range of load. The healthy rotor, single rotor bar fault and double rotor bar fault are tested with no load, 25%, 50%, 75%, and 100% rated load. From 50% to 100% rated load case, the rotor bar faults are detectable using indirect estimation of the load and the comparing the magnitudes of feature frequency. The no load case and under 40% rated load case, rotor fault are un detectable.
In this paper, a winding fault diagnosis method base on MCSA(Motor Current Signature Analysis) for BLDC motor is proposed. This method is programmed by LabVIEW for winding fault diagnosis. For winding fault diagnosis, two types of winding fault(shorted turn at one pole, shorted turn at two pole in same phase) are put intentionally in on phase. The motor current is collected by hole sensor, and transformed by the Park's transform, and then the Park's Vector Pattern are obtained, Usually this pattern is formed an ellipse, so a proper threshold value of distortion ratio(the ratio of the shortest axis and longest axis of ellipse) is suggested for winding faults diagnosis.
본 논문은 brain-computer interface (BCI)를 통해 움직임 상상 시 측정된 뇌-활동전위신호(EEG)에 내포된 행동의도의 패턴을 보다 정확하게 분류하기 위한 최적 EEG 채널 선택 기법을 제안한다. 기존의 EEG 측정실험에서는 실험 설계자에 의해 대뇌 기능적 피질 분류를 이용하여 인위적으로 선별된 채널을 활용하거나 측정기기가 수용 가능한 전체 채널을 사용해왔으며, 일정 수준의 패턴분류 정확도를 얻을 수 있었지만 다수의 채널로 인해 Common Spatial Pattern (CSP) 등의 패턴특징 추출 시 overfit 및 계산 복잡도 증가의 문제가 발생되었다. 이를 극복하기 위하여 방안으로 본 논문에서는 binary particle swarm optimization (BPSO)을 기반으로 다수의 채널 중 최적 채널을 자동으로 선택하고, 각각의 채널에 대한 impact factor를 부여함으로써 중요 채널 부근의 채널들에 가중치를 부여하는 선택방법을 제안하였으며, Support Vector Machine (SVM)을 이용하여 다수의 채널을 사용 하였을 때의 정확도와 channel impact factor를 고려한 BPSO를 적용시켰을 때의 정확도를 비교, 분석하였다.
This paper addresses a problem of classifying human breast cancer into its subtypes. A main ingredient in our approach is kernel machines such as support vector machine (SVM). kernel principal component analysis (KPCA). and kernel partial least squares (KPLS). In the task of breast cancer classification, we employ both SVM and KPLS and compare their results. In addition to this classification. we also analyze the patterns of clinical outcomes in the feature space. In order to visualize the clinical outcomes in low-dimensional space, both KPCA and KPLS are used. It turns out that these methods are useful to identify correlations between clinical outcomes and the nonlinearly protected expression profiles in low-dimensional feature space.
본 논문에서는 신경회로망보다 우수한 성능을 보이는 학습 이론인 SVM을 기반으로, 인간의 인지 과학에서 많은 연구가 이루어지고 있는 선택적 주의집중을 응용한 중첩 패턴 인식 시스템을 제안한다. 제안된 선택적 주의집중 모델은 SVM의 입력단에 주의집중층을 추가하여 SVM의 입력을 직접 변화시키는 학습을 하며 선택적 필터의 기능을 수행한다. 주의집중의 핵심은 학습을 멈추는 적절한 시점을 찾는 것과 그 시점에서 결과를 판단하는 주의집중 척도를 정의하는 것이다. 지지벡터는 주변에 존재하는 패턴들을 대표하는 표본이므로 입력 패턴이 초기상태일 때 주의집중을 하고자 하는 클래스의 가장 가까운 지지벡터를 기준으로 그 지지벡터와의 거리가 최소가 되었을 때 주의집중을 멈추는 것이 적절하다. 일반적인 주의집중을 적용하면 주의집중 척도를 정의하기가 난해해지기 때문에 변형된 입력이 원래 입력의 범위를 넘지 않는다는 제약조건을 추가하여 사용할 수 있는 정보의 폭을 넓히고 새로운 척도를 정의하였다. 이때 사용한 정보는 변형된 입력과 원래 입력의 유클리드 거리, SVM의 출력, 초기상태에 가장 가까웠던 히든뉴런의 출력값이다. 인식 실험을 위해 USPS 숫자 데이터를 사용하여 45개의 조합으로 중첩시켰으며, 주의집중을 적용시켰을 때 단일 SVM보다 인식 성능이 월등히 우수함을 확인하였고, 또한 제한된 주의집중을 사용하였을 때 일반적 주의집중을 이용하는 것 보다 성능이 더 뛰어났음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.