• 제목/요약/키워드: Park's vector pattern

검색결과 43건 처리시간 0.045초

LabVIEW를 이용한 유도전동기 고정자 권선 고장진단시스템 (Stator winding faults diagnosis system of induction motor using LabVIEW)

  • 송명현;박규남;이태훈;한동기;박경한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2658-2660
    • /
    • 2005
  • This paper presents a stator winding fault diagnosis technique of induction motor on the PC - based virtual instrumentation system designed using the graphical programming language LabVIEW. This method collects the 3-phase current signals using the current probe amplifier and PXI/DAQ system then the preprocessing removes the noise using LPF, after then this method transforms the stator current to Park's vector and obtains the each Park's Vector pattern and detects stator winding fault by comparing the obtained faulted pattern with the healthy pattern. This proposed LabVIEW based diagnosis system is applied to the 3 phase 1 hp induction motor and obtained the reasonable results under no load condition. The test results give us the possibility a simple and realistic on-line winding fault diagnosis system.

  • PDF

A CHARACTERIZATION OF MINIMAL SEMIPOSITIVITY OF SIGN PATTERN MATRICES

  • Park, S.W.;Seol, H.G.;Lee, S.G.
    • 대한수학회논문집
    • /
    • 제13권3호
    • /
    • pp.465-473
    • /
    • 1998
  • A real m $\times$ n matrix A is semipositive (SP) if there is a vector x $\geq$ 0 such that Ax > 0, inequalities being entrywise. A is minimally semipositive (MSP) if A is semipositive and no column deleted submatrix of A is semipositive. We give a necessary and sufficient condition for the sign pattern matrix with n positive entries to be minimally semipositive.

  • PDF

날씨에 따른 한글 폰트 윤곽선 벡터 변형 알고리즘 (Hangul Font Outline Vector Modification Algorithm According to Weather Information)

  • 박동연;조세란;김남희;임순범
    • 한국멀티미디어학회논문지
    • /
    • 제25권9호
    • /
    • pp.1328-1337
    • /
    • 2022
  • Recently, research on various font designs has been actively conducted to deliver effective emotional information in a digital environment. In this study, we propose a Hangul font outline vector modification algorithm that effectively conveys sensitivity according to weather information and can be transformed immediately. The algorithm performs a series of transformations: sets outlines according to design pattern templates, calculates the glyph's position to reflect physical rules, splits outline segments into smaller sizes and deforms the outlines. Through this, we could create several vector font designs such as humidity, cloud, wind, and snow. The usability evaluation was close to good, so it can be used in diverse ways if we improve readability and effective design expression.

은닉 마르코프 모델을 이용한 질량 편심이 있는 회전기기의 상태진단 (Condition Monitoring Of Rotating Machine With Mass Unbalance Using Hidden Markov Model)

  • 고정민;최찬규;강토;한순우;박진호;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.833-834
    • /
    • 2014
  • In recent years, a pattern recognition method has been widely used by researchers for fault diagnoses of mechanical systems. A pattern recognition method determines the soundness of a mechanical system by detecting variations in the system's vibration characteristics. Hidden Markov model has recently been used as pattern recognition methods in various fields. In this study, a HMM method for the fault diagnosis of a mechanical system is introduced, and a rotating machine with mass unbalance is selected for fault diagnosis. Moreover, a diagnosis procedure to identity the size of a defect is proposed in this study.

  • PDF

팍스벡터 패턴을 이용한 회전자 바 고장 자동 진단 (An Automatic Diagnosis for Rotor Bar Faults using Park's vector Pattern)

  • 송명현;박규남;한동기;양철오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.361-363
    • /
    • 2007
  • In this paper, an auto-diagnosis method of rotor bar fault for small induction motor is suggested. Usually FFT of stator currents are given the good results, but to detect the fault, slip is needed for calculating the feature frequency. The slip is varied as the load is changed. So in this paper, some alternative method for estimating the load is suggested. This method is based on the Park's vector pattern. The magnitudes of the feature frequency are compared with the threshhold that is predefined in the bounded range of load. The healthy rotor, single rotor bar fault and double rotor bar fault are tested with no load, 25%, 50%, 75%, and 100% rated load. From 50% to 100% rated load case, the rotor bar faults are detectable using indirect estimation of the load and the comparing the magnitudes of feature frequency. The no load case and under 40% rated load case, rotor fault are un detectable.

  • PDF

MCSA를 이용한 BLDC 전동기의 고정자 권선 고장 진단 (Winding Fault Diagnosis for BLDC Motor using MCSA)

  • 이대성;양철오;김준영;김대홍;문용선;박규남;송명현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1876-1877
    • /
    • 2011
  • In this paper, a winding fault diagnosis method base on MCSA(Motor Current Signature Analysis) for BLDC motor is proposed. This method is programmed by LabVIEW for winding fault diagnosis. For winding fault diagnosis, two types of winding fault(shorted turn at one pole, shorted turn at two pole in same phase) are put intentionally in on phase. The motor current is collected by hole sensor, and transformed by the Park's transform, and then the Park's Vector Pattern are obtained, Usually this pattern is formed an ellipse, so a proper threshold value of distortion ratio(the ratio of the shortest axis and longest axis of ellipse) is suggested for winding faults diagnosis.

  • PDF

Channel Impact Factor 접목한 BPSO 기반 최적의 EEG 채널 선택 기법 (Optimal EEG Channel Selection using BPSO with Channel Impact Factor)

  • 김준엽;박승민;고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.774-779
    • /
    • 2012
  • 본 논문은 brain-computer interface (BCI)를 통해 움직임 상상 시 측정된 뇌-활동전위신호(EEG)에 내포된 행동의도의 패턴을 보다 정확하게 분류하기 위한 최적 EEG 채널 선택 기법을 제안한다. 기존의 EEG 측정실험에서는 실험 설계자에 의해 대뇌 기능적 피질 분류를 이용하여 인위적으로 선별된 채널을 활용하거나 측정기기가 수용 가능한 전체 채널을 사용해왔으며, 일정 수준의 패턴분류 정확도를 얻을 수 있었지만 다수의 채널로 인해 Common Spatial Pattern (CSP) 등의 패턴특징 추출 시 overfit 및 계산 복잡도 증가의 문제가 발생되었다. 이를 극복하기 위하여 방안으로 본 논문에서는 binary particle swarm optimization (BPSO)을 기반으로 다수의 채널 중 최적 채널을 자동으로 선택하고, 각각의 채널에 대한 impact factor를 부여함으로써 중요 채널 부근의 채널들에 가중치를 부여하는 선택방법을 제안하였으며, Support Vector Machine (SVM)을 이용하여 다수의 채널을 사용 하였을 때의 정확도와 channel impact factor를 고려한 BPSO를 적용시켰을 때의 정확도를 비교, 분석하였다.

Kernel Methods를 이용한 Human Breast Cancer의 subtype의 분류 및 Feature space에서 Clinical Outcome의 pattern 분석 (Subtype classification of Human Breast Cancer via Kernel methods and Pattern Analysis of Clinical Outcome over the feature space)

  • Kim, Hey-Jin;Park, Seungjin;Bang, Sung-Uang
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.175-177
    • /
    • 2003
  • This paper addresses a problem of classifying human breast cancer into its subtypes. A main ingredient in our approach is kernel machines such as support vector machine (SVM). kernel principal component analysis (KPCA). and kernel partial least squares (KPLS). In the task of breast cancer classification, we employ both SVM and KPLS and compare their results. In addition to this classification. we also analyze the patterns of clinical outcomes in the feature space. In order to visualize the clinical outcomes in low-dimensional space, both KPCA and KPLS are used. It turns out that these methods are useful to identify correlations between clinical outcomes and the nonlinearly protected expression profiles in low-dimensional feature space.

  • PDF

SVM기반의 선택적 주의집중을 이용한 중첩 패턴 인식 (Recognition of Superimposed Patterns with Selective Attention based on SVM)

  • 배규찬;박형민;오상훈;최용선;이수영
    • 대한전자공학회논문지SP
    • /
    • 제42권5호
    • /
    • pp.123-136
    • /
    • 2005
  • 본 논문에서는 신경회로망보다 우수한 성능을 보이는 학습 이론인 SVM을 기반으로, 인간의 인지 과학에서 많은 연구가 이루어지고 있는 선택적 주의집중을 응용한 중첩 패턴 인식 시스템을 제안한다. 제안된 선택적 주의집중 모델은 SVM의 입력단에 주의집중층을 추가하여 SVM의 입력을 직접 변화시키는 학습을 하며 선택적 필터의 기능을 수행한다. 주의집중의 핵심은 학습을 멈추는 적절한 시점을 찾는 것과 그 시점에서 결과를 판단하는 주의집중 척도를 정의하는 것이다. 지지벡터는 주변에 존재하는 패턴들을 대표하는 표본이므로 입력 패턴이 초기상태일 때 주의집중을 하고자 하는 클래스의 가장 가까운 지지벡터를 기준으로 그 지지벡터와의 거리가 최소가 되었을 때 주의집중을 멈추는 것이 적절하다. 일반적인 주의집중을 적용하면 주의집중 척도를 정의하기가 난해해지기 때문에 변형된 입력이 원래 입력의 범위를 넘지 않는다는 제약조건을 추가하여 사용할 수 있는 정보의 폭을 넓히고 새로운 척도를 정의하였다. 이때 사용한 정보는 변형된 입력과 원래 입력의 유클리드 거리, SVM의 출력, 초기상태에 가장 가까웠던 히든뉴런의 출력값이다. 인식 실험을 위해 USPS 숫자 데이터를 사용하여 45개의 조합으로 중첩시켰으며, 주의집중을 적용시켰을 때 단일 SVM보다 인식 성능이 월등히 우수함을 확인하였고, 또한 제한된 주의집중을 사용하였을 때 일반적 주의집중을 이용하는 것 보다 성능이 더 뛰어났음을 확인하였다.