• 제목/요약/키워드: Pareto-Optimal Solution

검색결과 96건 처리시간 0.02초

다목적함수 최적화를 위한 새로운 진화적 방법 연구 (A Study of New Evolutionary Approach for Multiobjective Optimization)

  • 심문보;서명원
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.987-992
    • /
    • 2002
  • In an attempt to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Pareto-optimal points, instead of a single point. In this paper, pareto-based Continuous Evolutionary Algorithms for Multiobjective Optimization problems having continuous search space are introduced. This algorithm is based on Continuous Evolutionary Algorithms to solve single objective optimization problems with a continuous function and continuous search space efficiently. For multiobjective optimization, a progressive reproduction operator and a niche-formation method fur fitness sharing and a storing process for elitism are implemented in the algorithm. The operator and the niche formulation allow the solution set to be distributed widely over the Pareto-optimal tradeoff surface. Finally, the validity of this method has been demonstrated through a numerical example.

DEA기반 순위결정 절차를 이용한 파레토 최적해의 우선순위 결정: 저수지군 연계 운영문제를 중심으로 (Ranking the Pareto-optimal Solutions using DEA-based Ranking Procedure: an Application to Multi-reservoir Operation Problem)

  • 전승목;김재희;김승권
    • 산업공학
    • /
    • 제21권1호
    • /
    • pp.75-84
    • /
    • 2008
  • It is a difficult task for decision makers(DMs) to choose an appropriate release plan which balances the conflicts between water storage and hydro-electric energy generation in a multi-reservoir operation problem. In this study, we proposed a DEA-based ranking procedure by which the DM can rank the potential alternatives and select the best solution among the Pareto-optimal solutions. The proposed procedure can resolve the problem of mix inefficiency that may cause errors in measuring the efficiency of alternatives. We applied the proposed procedure to the multi-reservoir operation problem for the Geum-River basin and could choose the best efficient solution from the Pareto-set which were generated by the Coordinated Multi-Reservoir Operating Model.

다목적 함수 최적화를 위한 게임 모델에 기반한 공진화 알고리즘에서의 해집단의 다양성에 관한 연구 (Study on Diversity of Population in Game model based Co-evolutionary Algorithm for Multiobjective optimization)

  • 이희재;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.869-874
    • /
    • 2007
  • 다목적 함수의 최적화 문제(Multiobjective optimization problems)의 경우에는 하나의 최적해가 존재하는 것이 아니라 '파레토 최적해 집합(Pareto optimal set)'이라고 알려진 해들의 집합이 존재한다. 이러한 이상적 파레토 최적해 집합과 가까운 최적해를 찾기 위한 다양한 해탐색 능력은 진화 알고리즘의 성능을 결정한다. 본 논문에서는 게임 모델에 기반한 공진화 알고리즘(GCEA: Game model based Co-Evolutionary Algorithm)에서 해집단의 다양성을 유지하여, 다양한 비지배적 파레토 대안해(non-dominated alternatives)들을 찾기 위한 방법을 제안한다.

Clustering Parts Based on the Design and Manufacturing Similarities Using a Genetic Algorithm

  • Lee, Sung-Youl
    • 한국산업정보학회논문지
    • /
    • 제16권4호
    • /
    • pp.119-125
    • /
    • 2011
  • The part family (PF) formation in a cellular manufacturing has been a key issue for the successful implementation of Group Technology (GT). Basically, a part has two different attributes; i.e., design and manufacturing. The respective similarity in both attributes is often conflicting each other. However, the two attributes should be taken into account appropriately in order for the PF to maximize the benefits of the GT implementation. This paper proposes a clustering algorithm which considers the two attributes simultaneously based on pareto optimal theory. The similarity in each attribute can be represented as two individual objective functions. Then, the resulting two objective functions are properly combined into a pareto fitness function which assigns a single fitness value to each solution based on the two objective functions. A GA is used to find the pareto optimal set of solutions based on the fitness function. A set of hypothetical parts are grouped using the proposed system. The results show that the proposed system is very promising in clustering with multiple objectives.

고도 다목적 문제에서의 의사 결정을 위한 이중 최적화 접근법 (A Two-tier Optimization Approach for Decision Making in Many-objective Problems)

  • 이기백
    • 한국콘텐츠학회논문지
    • /
    • 제15권7호
    • /
    • pp.21-29
    • /
    • 2015
  • 본 논문은 목적이 네 개 이상인 고도 다목적 문제(many-objective problem)에서의 의사 결정을 위한 새로운 이중(two-tier) 최적화 접근법을 제안한다. 목적의 개수가 증가할수록, 특히 네 개 이상부터는, 전체해(solution) 중에서 파레도 최적해(Parero-optimal solution)가 차지하는 비율이 기하급수적으로 증가한다. 그래서 일반 다목적 문제와는 달리, 의사 결정을 하는데 단순히 파레토 최적 해만을 찾는 것으로는 충분하지 않고, 찾은 파레토 최적 해들 중에서도 상대적으로 좀 더 선호하는 해들을 가려내는 것이 필요하다. 제안하는 접근법에서는 추가적인 최적화 단계를 추가함으로써 사용자의 선호도를 균형있게 반영하는 방향으로 파레토 최적해들을 찾는다. 이러한 2차 최적화는 관련된 2차 목적들을 수반하게 되는데, 2차 목적으로는 광역평가값과 혼잡 거리를 사용하였다. 광역평가값과 혼잡 거리는 각각 사용자의 선호도와 다양성을 대변하는 척도이다. 제안한 접근법의 우수성을 보이기 위해서는 잘 알려진 검증 함수들을 활용하는데, 같은 함수에 대해 제안한 접근법을 적용한 경우와 적용하지 않은 경우의 결과를 비교한다. 제안한 접근법을 적용함으로써 기존보다 사용자의 선호도를 잘 반영하면서 동시에 우수하고 다양한 의사 선택이 가능하다.

THE KARUSH-KUHN-TUCKER OPTIMALITY CONDITIONS IN INTERVAL-VALUED MULTIOBJECTIVE PROGRAMMING PROBLEMS

  • Hosseinzade, Elham;Hassanpour, Hassan
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1157-1165
    • /
    • 2011
  • The Karush-Kuhn-Tucker (KKT) necessary optimality conditions for nonlinear differentiable programming problems are also sufficient under suitable convexity assumptions. The KKT conditions in multiobjective programming problems with interval-valued objective and constraint functions are derived in this paper. The main contribution of this paper is to obtain the Pareto optimal solutions by resorting to the sufficient optimality condition.

Genetic Algorithm based Methodology for an Single-Hop Metro WDM Networks

  • Yang, Hyo-Sik;Kim, Sung-Il;Shin, Wee-Jae
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.306-309
    • /
    • 2005
  • We consider the multi-objective optimization of a multi-service arrayed-waveguide grating-based single-hop metro WDM network with the two conflicting objectives of maximizing throughput while minimizing delay. We develop and evaluate a genetic algorithm based methodology for finding the optimal throughput-delay tradeoff curve, the so-called Pareto-optimal frontier. Our methodology provides the network architecture and the Medium Access Control protocol parameters that achieve the Pareto-optima in a computationally efficient manner. The numerical results obtained with our methodology provide the Pareto-optimal network planning and operation solution for a wide range of traffic scenarios. The presented methodology is applicable to other networks with a similar throughput-delay tradeoff.

  • PDF

A Fuzzy-Goal Programming Approach For Bilevel Linear Multiple Objective Decision Making Problem

  • Arora, S.R.;Gupta, Ritu
    • Management Science and Financial Engineering
    • /
    • 제13권2호
    • /
    • pp.1-27
    • /
    • 2007
  • This paper presents a fuzzy-goal programming(FGP) approach for Bi-Level Linear Multiple Objective Decision Making(BLL-MODM) problem in a large hierarchical decision making and planning organization. The proposed approach combines the attractive features of both fuzzy set theory and goal programming(GP) for MODM problem. The GP problem has been developed by fixing the weights and aspiration levels for generating pareto-optimal(satisfactory) solution at each level for BLL-MODM problem. The higher level decision maker(HLDM) provides the preferred values of decision vector under his control and bounds of his objective function to direct the lower level decision maker(LLDM) to search for his solution in the right direction. Illustrative numerical example is provided to demonstrate the proposed approach.

균일분포의 파레토 최적해 생성을 위한 다목적 최적화 진화 알고리즘 (Evolutionary Multi-Objective Optimization Algorithms for Uniform Distributed Pareto Optimal Solutions)

  • 장수현;윤병주
    • 정보처리학회논문지B
    • /
    • 제11B권7호
    • /
    • pp.841-848
    • /
    • 2004
  • 진화 알고리즘은 여러 개의 상충하는 목적을 갖는 다목적 최적화 문제를 해결하기에 적합한 방법이다. 특히, 파레토 지배관계에 기초하여 개체의 적합도를 평가하는 파레토 기반 진화알고리즘들은 그 성능에 있어서 비교적 우수한 평가를 받고 있다. 그러나 일반화된 다목적 최적화 진화알고리즘은 복잡한 문제들에서 찾아진 해들의 분포가 전체 파레토 경계면에 대하여 균일하지 못하고 특정 지역에서 집중적으로 해를 생성하는 문제점을 가지고 있다. 본 논문에서 우리는 이러한 문제점을 보완하기 위한 다목적 최적화 진화알고리즘을 제안한다. 제안한 알고리즘은 현재까지 찾아진 최적해들 중 특정 지역에 관중되지 않은 해를 우수 종자로 복제 연산에 참여시킨다. 따라서 특별한 지역탐색 기법을 사용하지 않아도 종자가 되는 개체 주위에 새로운 개체를 생성할 확률이 높기 때문에 지역탐색의 효과를 가질 수 있고, 비교적 고른 분포의 파레토 최적 해를 생성한 수 있다. 5개의 테스트 함수에 대한 실험 결과, 제안한 알고리즘은 모든 문제에서 전체 파레토 경계면에 균일한 분포의 해들을 생성할 수 있었으며, 많은 지역해를 가지는 문제를 제외한 모든 문제에서 NSGA-II보다 우수한 수렴 결과를 보였다.

파레토 지배순위와 밀도의 가중치를 이용한 다목적 최적화 진화 알고리즘 (Evolutionary Multi - Objective Optimization Algorithms using Pareto Dominance Rank and Density Weighting)

  • 장수현
    • 정보처리학회논문지B
    • /
    • 제11B권2호
    • /
    • pp.213-220
    • /
    • 2004
  • 진화 알고리즘은 여러 개의 상충하는 목적을 갖는 다목적 최적화 문제를 해결하기에 적합한 방법이다. 특히, 파레토 지배관계에 기초하여 개체의 적합도를 평가하는 파레토 기반 진화알고리즘들은 그 성능에 있어서 우수한 평가를 받고 있다. 최근의 파레토 기반 진화알고리즘들은 전체 파레토 프론트에 균일하게 분포하는 해집합의 생성을 위해 개체들의 밀도를 개체의 적합도를 평가하기 위한 하나의 요소로 사용하고 있다. 그러나 밀도의 역할은 전체 진화과정에서 중요한 요소가 되기보다는 파레토 프론트에 어느 정도 수렴된 후, 개체의 균일 분포를 만들기 위해 사용된다. 본 논문에서 우리는 파레토 지배 순위와 밀도에 대한 임의가중치를 적용한 다목적 최적화 진화알고리즘을 제안한다. 제안한 알고리즘은 진화 개체의 적합도를 평가하기 위해 파레토 순위와 밀도에 대한 임의의 가중치를 적용하므로 전체 진화과정에서 파레토 순위와 밀도가 비슷한 영향을 미치도록 하였다. 또한, 제안한 방법을 6개의 다목적 최적화 문제에 적용한 결과 비교적 우수한 결과를 보였다.