DOI QR코드

DOI QR Code

Evolutionary Multi - Objective Optimization Algorithms using Pareto Dominance Rank and Density Weighting

파레토 지배순위와 밀도의 가중치를 이용한 다목적 최적화 진화 알고리즘

  • 장수현 (명지대학교 대학원 컴퓨터공학과)
  • Published : 2004.04.01

Abstract

Evolutionary algorithms are well-suited for multi-objective optimization problems involving several. often conflicting objective. Pareto-based evolutionary algorithms, in particular, have shown better performance than other multi-objective evolutionary algorithms in comparison. Recently, pareto-based evolutionary algorithms uses a density information in fitness assignment scheme for generating uniform distributed global pareto optimal front. However, the usage of density information is not Important elements in a whole evolution path but plays an auxiliary role in order to make uniform distribution. In this paper, we propose an evolutionary algorithms for multi-objective optimization which assigns the fitness using pareto dominance rank and density weighting, and thus pareto dominance rank and density have similar influence on the whole evolution path. Furthermore, the experimental results, which applied our method to the six multi-objective optimization problems, show that the proposed algorithms show more promising results.

진화 알고리즘은 여러 개의 상충하는 목적을 갖는 다목적 최적화 문제를 해결하기에 적합한 방법이다. 특히, 파레토 지배관계에 기초하여 개체의 적합도를 평가하는 파레토 기반 진화알고리즘들은 그 성능에 있어서 우수한 평가를 받고 있다. 최근의 파레토 기반 진화알고리즘들은 전체 파레토 프론트에 균일하게 분포하는 해집합의 생성을 위해 개체들의 밀도를 개체의 적합도를 평가하기 위한 하나의 요소로 사용하고 있다. 그러나 밀도의 역할은 전체 진화과정에서 중요한 요소가 되기보다는 파레토 프론트에 어느 정도 수렴된 후, 개체의 균일 분포를 만들기 위해 사용된다. 본 논문에서 우리는 파레토 지배 순위와 밀도에 대한 임의가중치를 적용한 다목적 최적화 진화알고리즘을 제안한다. 제안한 알고리즘은 진화 개체의 적합도를 평가하기 위해 파레토 순위와 밀도에 대한 임의의 가중치를 적용하므로 전체 진화과정에서 파레토 순위와 밀도가 비슷한 영향을 미치도록 하였다. 또한, 제안한 방법을 6개의 다목적 최적화 문제에 적용한 결과 비교적 우수한 결과를 보였다.

Keywords

References

  1. J. D. Schaffer, 'Multiple objective optimization with vector evaluated genetic algorithms,' In Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp.93-100, 1985
  2. M. P. Fourman, 'Compaction of Symbolic Layout using Genetic Algorithms,' In Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 141-153, 1985
  3. Frank Kursawe, 'A Variant of evolution strategies for vector optimization,' In Parallel Problem Solving from Nature, 1st Workshop, PPSN Ⅰ, volume 496 of Lecture Notes in Computer Science, pp.193-197, 1991 https://doi.org/10.1007/BFb0029752
  4. Carlos, M. Fonseca and Peter J. Fleming, 'Genetic Algorithms for Multiobjective Optimization : Formulation, Discussion and Generalization,' In Proceedings of the Fifth International Conference on Genetic Algorithms, pp.416-423, 1993
  5. Jeffrey Horn and Nicholas Nafpliotis, 'Multiobjective Optimization using the Niched Pareto Ganetic Algorithm,' Technical Report IlliGAl Report 93005, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 1993
  6. N. Srinivas and Kalyanmoy Deb, 'Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms,' Evolutionary Computation, Vol.2, No.3, pp.221-248, 1994 https://doi.org/10.1162/evco.1994.2.3.221
  7. Kalyanmoy Deb, Samir Agrawal, Amrit Pratab, and T. Meyarivan, 'A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization : SGA-II,' Proceedings of the Parallel Problem Solving from Nature Ⅵ Conference, pp.849-858, Springer, 2000
  8. Eckart Zitzler, Marco Laumanns and Lothar Thiele, 'SPEA2 : Improving the Strength Pareto Evolutionary Algorithm,' EUROGEN 2001, Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, pp.12-21, 2001
  9. Carlos, A. Coello Coello and Nareli Cruz Cortes, 'Solving Multiobjective Optimization Problems using an Artificial Immune System,'Technical Report EVOCINV-05-2002, Evolutionary Computation Group at CINVESTAV, Kluwer Academic, 2002
  10. Joshua D. Knowles and David W. Corne, 'Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy,' Evolutionary Computation, Vol.8, No.2, pp.149-172, 2000 https://doi.org/10.1162/106365600568167
  11. Carls M. Fonseca and Peter J. Fleming, 'Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms-Part I: A Unified Formulation,' IEEE Transactions on Systems, Man, and Cybernetics, Part : Systems and Humans, Vol.28, No.1, pp.26-37, 1998 https://doi.org/10.1109/3468.650319
  12. Christine L. Valenzuela, 'A Simple Evolutionary Algorithm for Multi-Objective Optimization(SEAMO),' in Congress on Evolutionary Computation(CEC'2002), Vol.1, pp.717-722, 2002 https://doi.org/10.1109/CEC.2002.1007014
  13. Kalyanmoy Deb, 'Multi-Objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems,' Evolutionary Computation, Vol.7, No.3, pp.205-230, 1999 https://doi.org/10.1162/evco.1999.7.3.205
  14. Eckart Zitzler, Kalyanmoy Deb and Lothar Thiele, 'Comparison of Multiobjective Evolutionary Algorithms : Empirical Results,' Evolutionary Computation, Vol.8, No.2, pp.173-195, 2000 https://doi.org/10.1162/106365600568202
  15. Eckart Zitzler and Lothar Thiele, 'Multiobjective optimization using evolutionary algorithms-a Comparative study,' In Parallel Problem Solving from Nature V, pp.292-301, 1998 https://doi.org/10.1007/BFb0056872