• Title/Summary/Keyword: Pareto Solution

Search Result 128, Processing Time 0.025 seconds

Game Model Based Co-evolutionary Solution for Multiobjective Optimization Problems

  • Sim, Kwee-Bo;Kim, Ji-Yoon;Lee, Dong-Wook
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.247-255
    • /
    • 2004
  • The majority of real-world problems encountered by engineers involve simultaneous optimization of competing objectives. In this case instead of single optima, there is a set of alternative trade-offs, generally known as Pareto-optimal solutions. The use of evolutionary algorithms Pareto GA, which was first introduced by Goldberg in 1989, has now become a sort of standard in solving Multiobjective Optimization Problems (MOPs). Though this approach was further developed leading to numerous applications, these applications are based on Pareto ranking and employ the use of the fitness sharing function to maintain diversity. Another scheme for solving MOPs has been presented by J. Nash to solve MOPs originated from Game Theory and Economics. Sefrioui introduced the Nash Genetic Algorithm in 1998. This approach combines genetic algorithms with Nash's idea. Another central achievement of Game Theory is the introduction of an Evolutionary Stable Strategy, introduced by Maynard Smith in 1982. In this paper, we will try to find ESS as a solution of MOPs using our game model based co-evolutionary algorithm. First, we will investigate the validity of our co-evolutionary approach to solve MOPs. That is, we will demonstrate how the evolutionary game can be embodied using co-evolutionary algorithms and also confirm whether it can reach the optimal equilibrium point of a MOP. Second, we will evaluate the effectiveness of our approach, comparing it with other methods through rigorous experiments on several MOPs.

A study on the optimal design of rope way (索道線路의 最適設計에 대한 硏究)

  • 최선호;박용수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.26-35
    • /
    • 1987
  • As an attempt to make the multi-objection for the line design of the rope way, the resulted formulas from the catenary curve as exact ones were summarized, and it was found out that the Kuhn-Tucker's optimality conditions and regions of the objective functions can analytically be expressed with dimensionless parameters. The Pareto's optimum solution set was analytically obtained through the objective function-the minimum relation of $W^{*}$, and $W^{*}$ is a trade-off relation. From this, The dimension of a rope and the value of an initial tension that are the standard in design of the rope way were determined. It was concluded that $V^{*}$ should become minimum, and that the ratio of the dimension of rope to the value of and initial tension become larger than superposition factor corresponding to curve AB.to curve AB.

Multi-Objective Pareto Optimization of Parallel Synthesis of Embedded Computer Systems

  • Drabowski, Mieczyslaw
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.304-310
    • /
    • 2021
  • The paper presents problems of optimization of the synthesis of embedded systems, in particular Pareto optimization. The model of such a system for its design for high-level of abstract is based on the classic approach known from the theory of task scheduling, but it is significantly extended, among others, by the characteristics of tasks and resources as well as additional criteria of optimal system in scope structure and operation. The metaheuristic algorithm operating according to this model introduces a new approach to system synthesis, in which parallelism of task scheduling and resources partition is applied. An algorithm based on a genetic approach with simulated annealing and Boltzmann tournaments, avoids local minima and generates optimized solutions. Such a synthesis is based on the implementation of task scheduling, resources identification and partition, allocation of tasks and resources and ultimately on the optimization of the designed system in accordance with the optimization criteria regarding cost of implementation, execution speed of processes and energy consumption by the system during operation. This paper presents examples and results for multi-criteria optimization, based on calculations for specifying non-dominated solutions and indicating a subset of Pareto solutions in the space of all solutions.

Shape Design of Frame Structures for Vibration Suppression and Weight Reduction

  • Hase, Miyahito;Ikeda, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2246-2251
    • /
    • 2003
  • This paper proposes shape design of frame structures for vibration suppression and weight reduction. The $H_{\infty}$ norm of the transfer function from disturbance sources to the output points where vibration should be suppressed, is adopted as the performance index to represent the magnitude of vibration transfer. The design parameters are the node positions of the frame structure, on which constraints are imposed so that the structure achieves given tasks. For computation of Pareto optimal solutions to the two-objective design problem, a number of linear combinations of the $H_{\infty}$ norm and the total weight of the structure are considered and minimized. For minimization of the scalared objective function, a Lagrange function is defined by the objective function and the imposed constraints on the design parameters. The solution for which the Lagrange function satisfies the Karush-Kuhn-Tucker condition, is searched by the sequential quadratic programming (SQP) method. Numerical examples are presented to demonstrate the effectiveness of the proposed design method.

  • PDF

A Negotiation Method Based on Opportunity Cost in the Trucking Cargo Transportation Market (육상화물운송시장에서 기회비용을 고려한 협상방법론 연구)

  • Kim, Hyun-Soo;Cho, Jae-Hyung
    • The Journal of Information Systems
    • /
    • v.21 no.3
    • /
    • pp.99-116
    • /
    • 2012
  • As a way to allocate lots of orders to many participants for vehicle allocation problem, this study has used an agent negotiation based reverse auction model. This agent negotiation provides coordination functions allowing all participants to make a profit, and accomplishing Pareto optimum solution from the viewpoint of a whole trucking cargo transportation network. In order to build a strategic cooperation relationship based on information sharing, this agent negotiation provides a coordination mechanism in which all the participants including consignors, brokerage firms, and car owners are able to attain their own profits, and also that ensure a competitive market. This study has tried to prove that the result of an agent-based negotiation is the Pareto optimal solution under the present market environment. We established a mathematical formulation for a comparison with the Integer Programming model, and analysing e-Marketplace, structure of shipping expenses and brokerage system in the trucking cargo transportation industry.

Automated flight control system design using multi-objective optimization (다목적 최적화를 이용한 비행제어계 설계 자동화)

  • Ryu, Hyuk;Tak, Min-Je
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1296-1299
    • /
    • 1996
  • This paper proposes a design automation method for the flight control system of an aircraft based on optimization. The control system design problem which has many specifications is formulated as multi-objective optimization problem. The solution of this optimization problem should be considered in terms of Pareto-optimality. In this paper, we use an evolutionary algorithm providing numerous Pareto-optimal solutions. These solutions are given to a control system designer and the most suitable solution is selected. This method decreases tasks required to determine the control parameters satisfying all specifications. The design automation of a flight control system is illustrated through an example.

  • PDF

Multi-objective job shop scheduling using a competitive coevolutionary algorithm (경쟁 공진화알고리듬을 이용한 다목적 Job shop 일정계획)

  • Lee Hyeon Su;Sin Gyeong Seok;Kim Yeo Geun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.1071-1076
    • /
    • 2003
  • Evolutionary algorithm is recognized as a promising approach to solving multi-objective combinatorial optimization problems. When no preference information of decision makers is given, multi-objective optimization problems have been commonly used to search for diverse and good Pareto optimal solution. In this paper we propose a new multi-objective evolutionary algorithm based on competitive coevolutionary algorithm, and demonstrate the applicability of the algorithm. The proposed algorithm is designed to promote both population diversity and rapidity of convergence. To achieve this, the strategies of fitness evaluation and the operation of the Pareto set are developed. The algorithm is applied to job shop scheduling problems (JSPs). The JSPs have two objectives: minimizing makespan and minimizing earliness or tardiness. The proposed algorithm is compared with existing evolutionary algorithms in terms of solution quality and diversity. The experimental results reveal the effectiveness of our approach.

  • PDF

Optimization of Multi-objective Function based on The Game Theory and Co-Evolutionary Algorithm (게임 이론과 공진화 알고리즘에 기반한 다목적 함수의 최적화)

  • Sim, Kwee-Bo;Kim, Ji-Yoon;Lee, Dong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.491-496
    • /
    • 2002
  • Multi-objective Optimization Problems(MOPs) are occur more frequently than generally thought when we try to solve engineering problems. In the real world, the majority cases of optimization problems are the problems composed of several competitive objective functions. In this paper, we introduce the definition of MOPs and several approaches to solve these problems. In the introduction, established optimization algorithms based on the concept of Pareto optimal solution are introduced. And contrary these algorithms, we introduce theoretical backgrounds of Nash Genetic Algorithm(Nash GA) and Evolutionary Stable Strategy(ESS), which is the basis of Co-evolutionary algorithm proposed in this paper. In the next chapter, we introduce the definitions of MOPs and Pareto optimal solution. And the architecture of Nash GA and Co-evolutionary algorithm for solving MOPs are following. Finally from the experimental results we confirm that two algorithms based on Evolutionary Game Theory(EGT) which are Nash GA and Co-evolutionary algorithm can search optimal solutions of MOPs.

Optimum Plastic Design Method of Grillages under Uniformly Distributed Lateral Loads and Axial Forces (균일 분포 횡하중 및 축하중을 받는 격자형 구조물의 최적 소성설계법)

  • Chung, T.J.;Kim, K.S.;Park, Y.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.56-64
    • /
    • 1996
  • In this study, a review is made of the previous work(Ref. 1 and 5) for the development of the limit design method of the flat rectangular grillages under the lateral pressure. And the effect of the in-plane loads on the collapse theory is considered. The main part of the work is devoted in developing the standard design method of grillages under the criteria of minimum weight and minimum cost. In the final part, it was shown that Pareto solution methods can be easily applied to structural optimization with the multiple objectives, and the designer can have an appropriate choice from those Pareto optimal solutions.

  • PDF

A Symbiotic Evolutionary Algorithm for Balancing and Sequencing Mixed Model Assembly Lines with Multiple Objectives (다목적을 갖는 혼합모델 조립라인의 밸런싱과 투입순서를 위한 공생 진화알고리즘)

  • Kim, Yeo-Keun;Lee, Sang-Seon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.35 no.3
    • /
    • pp.25-43
    • /
    • 2010
  • We consider a multi-objective balancing and sequencing problem in mixed model assembly lines, which is important for an efficient use of the assembly lines. In this paper, we present a neighborhood symbiotic evolutionary algorithm to simultaneously solve the two problems of balancing and model sequencing under multiple objectives. We aim to find a set of well-distributed solutions close to the true Pareto optimal solutions for decision makers. The proposed algorithm has a two-leveled structure. At Level 1, two populations are operated : One consists of individuals each of which represents a partial solution to the balancing problem and the other consists of individuals for the sequencing problem. Level 2, which is an upper level, works one population whose individuals represent the combined entire solutions to the two problems. The process of Level 1 imitates a neighborhood symbiotic evolution and that of Level 2 simulates an endosymbiotic evolution together with an elitist strategy to promote the capability of solution search. The performance of the proposed algorithm is compared with those of the existing algorithms in convergence, diversity and computation time of nondominated solutions. The experimental results show that the proposed algorithm is superior to the compared algorithms in all the three performance measures.