• Title/Summary/Keyword: Pareto Solution

Search Result 128, Processing Time 0.026 seconds

Evolutionary Multi - Objective Optimization Algorithms using Pareto Dominance Rank and Density Weighting (파레토 지배순위와 밀도의 가중치를 이용한 다목적 최적화 진화 알고리즘)

  • Jang, Su-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.213-220
    • /
    • 2004
  • Evolutionary algorithms are well-suited for multi-objective optimization problems involving several. often conflicting objective. Pareto-based evolutionary algorithms, in particular, have shown better performance than other multi-objective evolutionary algorithms in comparison. Recently, pareto-based evolutionary algorithms uses a density information in fitness assignment scheme for generating uniform distributed global pareto optimal front. However, the usage of density information is not Important elements in a whole evolution path but plays an auxiliary role in order to make uniform distribution. In this paper, we propose an evolutionary algorithms for multi-objective optimization which assigns the fitness using pareto dominance rank and density weighting, and thus pareto dominance rank and density have similar influence on the whole evolution path. Furthermore, the experimental results, which applied our method to the six multi-objective optimization problems, show that the proposed algorithms show more promising results.

Aerodynamic Optimization of 3 Dimensional Wing-In-Ground Airfoils Using Multi-Objective Genetic Algorithm (지면효과를 받는 3 차원 WIG 선의 익형 형상 최적화)

  • Lee, Ju-Hee;You, Keun-Yeal;Park, Kyoung-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3080-3085
    • /
    • 2007
  • Shape optimization of the 3-dimensional WIG airfoil with 3.0-aspect ratio has been performed by using the multi-objective genetic algorithm. The WIG ship effectively floating above the surface by the ram effect and the virtual additional aspect ratio by a ground is one of next-generation and cost-effective transportations. Unlike the airplane flying out of the ground effect, a WIG ship has possibility to capsize because of unsatisfying the static stability. The WIG ship should satisfy aerodynamic properties as well as a static stability. They tend to strong contradict and it is difficult to satisfy aerodynamic properties and static stability simultaneously. It is inevitable that lift force has to scarify to obtain a static stability. Multi-objective optimization technique that the individual objectives are considered separately instead of weighting can overcome the conflict. Due to handling individual objectives, the optimum cannot be unique but a set of nondominated potential solutions: pareto optimum. There are three objectives; lift coefficient, lift-to-drag ratio and static stability. After a few evolutions, the non-dominated pareto individuals can be obtained. Pareto sets are all the set of possible and excellent solution across the design space. At any selections of the pareto set, these are no better solutions in all design space

  • PDF

A Fuzzy-Goal Programming Approach For Bilevel Linear Multiple Objective Decision Making Problem

  • Arora, S.R.;Gupta, Ritu
    • Management Science and Financial Engineering
    • /
    • v.13 no.2
    • /
    • pp.1-27
    • /
    • 2007
  • This paper presents a fuzzy-goal programming(FGP) approach for Bi-Level Linear Multiple Objective Decision Making(BLL-MODM) problem in a large hierarchical decision making and planning organization. The proposed approach combines the attractive features of both fuzzy set theory and goal programming(GP) for MODM problem. The GP problem has been developed by fixing the weights and aspiration levels for generating pareto-optimal(satisfactory) solution at each level for BLL-MODM problem. The higher level decision maker(HLDM) provides the preferred values of decision vector under his control and bounds of his objective function to direct the lower level decision maker(LLDM) to search for his solution in the right direction. Illustrative numerical example is provided to demonstrate the proposed approach.

A Two-tier Optimization Approach for Decision Making in Many-objective Problems (고도 다목적 문제에서의 의사 결정을 위한 이중 최적화 접근법)

  • Lee, Ki-Baek
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.7
    • /
    • pp.21-29
    • /
    • 2015
  • This paper proposes a novel two-tier optimization approach for decision making in many-objective problems. Because the Pareto-optimal solution ratio increases exponentially with an increasing number of objectives, simply finding the Pareto-optimal solutions is not sufficient for decision making in many-objective problems. In other words, it is necessary to discriminate the more preferable solutions from the other solutions. In the proposed approach, user preference-oriented as well as diverse Pareto-optimal solutions can be obtained as candidate solutions by introducing an additional tier of optimization. The second tier of optimization employs the corresponding secondary objectives, global evaluation and crowding distance, which were proposed in previous works, to represent the users preference to a solution and the crowdedness around a solution, respectively. To demonstrate the effectiveness of the proposed approach, decision making for some benchmark functions is conducted, and the outcomes with and without the proposed approach are compared. The experimental results demonstrate that the decisions are successfully made with consideration of the users preference through the proposed approach.

Automatic Calibration of Rainfall-runoff Model Using Multi-objective Function (다중목적함수를 이용한 강우-유출 모형의 자동보정)

  • Lee, Kil-Seong;Kim, Sang-Ug;Hong, Il-Pyo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.861-869
    • /
    • 2005
  • A rainfall-runoff model should be calibrated so that the model simulates the hydrological behavior of the basin as accurately as possible. In this study, to calibrate the five parameters of the SSARR model, a multi-objective function and the genetic algorithm were used. The solution of the multi-objective function will not, in general, be a single unique set of parameters but will consist of the so-called Pareto solution according to various trade-offs between the different objectives. The calibration strategy using multi-objective function could decrease calibrating time and effort. From the Pareto solution, a single solution could be selected to simulate a specific flow condition.

THE KARUSH-KUHN-TUCKER OPTIMALITY CONDITIONS IN INTERVAL-VALUED MULTIOBJECTIVE PROGRAMMING PROBLEMS

  • Hosseinzade, Elham;Hassanpour, Hassan
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1157-1165
    • /
    • 2011
  • The Karush-Kuhn-Tucker (KKT) necessary optimality conditions for nonlinear differentiable programming problems are also sufficient under suitable convexity assumptions. The KKT conditions in multiobjective programming problems with interval-valued objective and constraint functions are derived in this paper. The main contribution of this paper is to obtain the Pareto optimal solutions by resorting to the sufficient optimality condition.

Genetic Algorithm based Methodology for an Single-Hop Metro WDM Networks

  • Yang, Hyo-Sik;Kim, Sung-Il;Shin, Wee-Jae
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.306-309
    • /
    • 2005
  • We consider the multi-objective optimization of a multi-service arrayed-waveguide grating-based single-hop metro WDM network with the two conflicting objectives of maximizing throughput while minimizing delay. We develop and evaluate a genetic algorithm based methodology for finding the optimal throughput-delay tradeoff curve, the so-called Pareto-optimal frontier. Our methodology provides the network architecture and the Medium Access Control protocol parameters that achieve the Pareto-optima in a computationally efficient manner. The numerical results obtained with our methodology provide the Pareto-optimal network planning and operation solution for a wide range of traffic scenarios. The presented methodology is applicable to other networks with a similar throughput-delay tradeoff.

  • PDF

Study on Diversity of Population in Game model based Co-evolutionary Algorithm for Multiobjective optimization (다목적 함수 최적화를 위한 게임 모델에 기반한 공진화 알고리즘에서의 해집단의 다양성에 관한 연구)

  • Lee, Hea-Jae;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.869-874
    • /
    • 2007
  • In searching for solutions to multiobjective optimization problem, we find that there is no single optimal solution but rather a set of solutions known as 'Pareto optimal set'. To find approximation of ideal pareto optimal set, search capability of diverse individuals at population space can determine the performance of evolutionary algorithms. This paper propose the method to maintain population diversify and to find non-dominated alternatives in Game model based Co-Evolutionary Algorithm.

Pareto-Based Multi-Objective Optimization for Two-Block Class-Based Storage Warehouse Design

  • Sooksaksun, Natanaree
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.331-338
    • /
    • 2012
  • This research proposes a Pareto-based multi-objective optimization approach to class-based storage warehouse design, considering a two-block warehouse that operates under the class-based storage policy in a low-level, picker-to-part and narrow aisle warehousing system. A mathematical model is formulated to determine the number of aisles, the length of aisle and the partial length of each pick aisle to allocate to each product class that minimizes the travel distance and maximizes the usable storage space. A solution approach based on multiple objective particle swarm optimization is proposed to find the Pareto front of the problems. Numerical examples are given to show how to apply the proposed algorithm. The results from the examples show that the proposed algorithm can provide design alternatives to conflicting warehouse design decisions.

Evolutionary Multi-Objective Optimization Algorithms for Uniform Distributed Pareto Optimal Solutions (균일분포의 파레토 최적해 생성을 위한 다목적 최적화 진화 알고리즘)

  • Jang Su-Hyun;Yoon Byungjoo
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.841-848
    • /
    • 2004
  • Evolutionary a1gorithms are well-suited for multi-objective optimization problems involving several, often conflicting objectives. Pareto-based evolutionary algorithms, in particular, have shown better performance than other multi-objective evolutionary algorithms in comparison. However, generalized evolutionary multi-objective optimization algorithms have a weak point, in which the distribution of solutions are not uni-formly distributed onto Pareto optimal front. In this paper, we propose an evolutionary a1gorithm for multi-objective optimization which uses seed individuals in order to overcome weakness of algorithms Published. Seed individual means a solution which is not located in the crowded region on Pareto front. And the idea of our algorithm uses seed individuals for reproducing individuals for next generation. Thus, proposed a1go-rithm takes advantage of local searching effect because new individuals are produced near the seed individual with high probability, and is able to produce comparatively uniform distributed pareto optimal solutions. Simulation results on five testbed problems show that the proposed algo-rithm could produce uniform distributed solutions onto pareto optimal front, and is able to show better convergence compared to NSGA-II on all testbed problems except multi-modal problem.