• Title/Summary/Keyword: Pareto Optimal Set

Search Result 80, Processing Time 0.031 seconds

Multi-Objective Pareto Optimization of Parallel Synthesis of Embedded Computer Systems

  • Drabowski, Mieczyslaw
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.304-310
    • /
    • 2021
  • The paper presents problems of optimization of the synthesis of embedded systems, in particular Pareto optimization. The model of such a system for its design for high-level of abstract is based on the classic approach known from the theory of task scheduling, but it is significantly extended, among others, by the characteristics of tasks and resources as well as additional criteria of optimal system in scope structure and operation. The metaheuristic algorithm operating according to this model introduces a new approach to system synthesis, in which parallelism of task scheduling and resources partition is applied. An algorithm based on a genetic approach with simulated annealing and Boltzmann tournaments, avoids local minima and generates optimized solutions. Such a synthesis is based on the implementation of task scheduling, resources identification and partition, allocation of tasks and resources and ultimately on the optimization of the designed system in accordance with the optimization criteria regarding cost of implementation, execution speed of processes and energy consumption by the system during operation. This paper presents examples and results for multi-criteria optimization, based on calculations for specifying non-dominated solutions and indicating a subset of Pareto solutions in the space of all solutions.

Fuzzy Group Decision Making for Multiple Decision Maker-Multiple Objective Programming Problems

  • Yano, Hitoshi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.380-383
    • /
    • 2003
  • In this paper, we propose a fuzzy group decision making method for multiple decision maker-multiple objective programming problems to obtain the agreeable solution. In the proposed method, considering the vague nature of human subjective judgement it is assumed that each of multiple decision makers has a fuzzy goal for each of his/her own objective functions. After eliciting the membership functions from the decision makers for their fuzzy goals, total M-Pareto optimal solution concept is defined in membership spaces in order to deal with multiple decision maker-multiple objective programming problems. For generating a candidate of the agreeable solution which is total M-Pareto optimal, the extended weighted minimax problem is formulated and solved for some weighting vector which is specified by the decision makers in their subjective manner, Given the total M-Pareto optimal solution, each of the derision makers must either be satisfied with the current values of the membership functions, or update his/her weighting vector, However, in general, it seems to be very difficult to find the agreeable solution with which all of the decision makers are satisfied perfectly because of the conflicts between their membership functions. In the proposed method, each of the decision makers is requested to estimate the degree of satisfaction for the candidate of the agreeable solution. Using the estimated values or satisfaction of each of the decision makers, the core concept is desnfied, which is a set of undominated candidates. The interactive algorithm is developed to obtain the agreeable solution which satisfies core conditions.

  • PDF

Shape Optimization of Internally Finned Tube with Helix Angle (나선형 핀이 내부에 부착된 관의 형상최적화)

  • Kim, Yang-Hyun;Ha, Ok-Nam;Lee, Ju-Hee;Park, Kyoung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.500-511
    • /
    • 2007
  • The Optimal solutions of the design variables in internally finned tubes have been obtained for three-dimensional periodically fully developed turbulent flow and heat transfer. For a trapezoidal fin profile, performances of the heat exchanger are determined by considering the heat transfer rate and pressure drop, simultaneously, that are interdependent quantities. Therefore, Pareto frontier sets of a heat exchanger can be acquired by integrating CFD and a multi-objective optimization technique. The optimal values of fin widths $(d_1,\;d_2)$, fin height(h) and helix angle$(\gamma)$ are numerical1y obtained by minimizing the pressure loss and maximizing the heat transfer rate within ranges of $d_1=0.5\sim1.5mm$, $d_2=0.5\sim1.5mm$, $h=0.5\sim1.5mm$, and $\gamma=0\sim20^{\circ}$. For this, a general CFD code and a global genetic algorithm(GA) are used. The Pareto sets of the optimal solutions can be acquired after $30^{th}$ generation.

A Pareto Ant Colony Optimization Algorithm for Application-Specific Routing in Wireless Sensor & Actor Networks (무선 센서 & 액터 네트워크에서 주문형 라우팅을 위한 파레토 개미 집단 최적화 알고리즘)

  • Kang, Seung-Ho;Choi, Myeong-Soo;Jung, Min-A;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.346-353
    • /
    • 2011
  • Routing schemes that service applications with various delay times, maintaining the long network life time are required in wireless sensor & actor networks. However, it is known that network lifetime and hop count of trees used in routing methods have the tradeoff between them. In this paper, we propose a Pareto Ant Colony Optimization algorithm to find the Pareto tree set such that it optimizes these both tradeoff objectives. As it enables applications which have different delay times to select appropriate routing trees, not only satisfies the requirements of various multiple applications but also guarantees long network lifetime. We show that the Pareto tree set found by proposed algorithm consists of trees that are closer to the Pareto optimal points in terms of hop count and network lifetime than minimum spanning tree which is a representative routing tree.

Multi-Objective Integrated Optimal Design of Hybrid Structure-Damper System Satisfying Target Reliability (목표신뢰성을 만족하는 구조물-감쇠기 복합시스템의 다목적 통합최적설계)

  • Ok, Seung-Yong;Park, Kwan-Soon;Song, Jun-Ho;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.9-22
    • /
    • 2008
  • This paper presents an integrated optimal design technique of a hybrid structure-damper system for improving the seismic performance of the structure. The proposed technique corresponds to the optimal distribution of the stiffness and dampers. The multi-objective optimization technique is introduced to deal with the optimal design problem of the hybrid system, which is reformulated into the multi-objective optimization problem with a constraint of target reliability in an efficient manner. An illustrative example shows that the proposed technique can provide a set of Pareto optimal solutions embracing the solutions obtained by the conventional sequential design method and single-objective optimization method based on weighted summation scheme. Based on the stiffness and damping capacities, three representative designs are selected among the Pareto optimal solutions and their seismic performances are investigated through the parametric studies on the dynamic characteristics of the seismic events. The comparative results demonstrate that the proposed approach can be efficiently applied to the optimal design problem for improving the seismic performance of the structure.

A Simulation Optimization Method Using the Multiple Aspects-based Genetic Algorithm (다측면 유전자 알고리즘을 이용한 시뮬레이션 최적화 기법)

  • 박성진
    • Journal of the Korea Society for Simulation
    • /
    • v.6 no.1
    • /
    • pp.71-84
    • /
    • 1997
  • For many optimization problems where some of the system components are stochastic, the objective functions cannot be represented analytically. Therefore, modeling by computer simulation is one of the most effective means of studying such complex systems. Many, if not most, simulation optimization problems have multiple aspects. Historically, multiple aspects have been combined ad hoc to form a scalar objective function, usually through a linear combination (weighted sum) of the multiple attributes, or by turning objectives into constraints. The genetic algorithm (GA), however, is readily modified to deal with multiple aspects. In this paper we propose a MAGA (Multiple Aspects-based Genetic Algorithm) as an algorithm for finding the Pareto optimal set. We demonstrate its ability to find and maintain a diverse "Pareto optimal population" on two problems.

  • PDF

Elite-initial population for efficient topology optimization using multi-objective genetic algorithms

  • Shin, Hyunjin;Todoroki, Akira;Hirano, Yoshiyasu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.324-333
    • /
    • 2013
  • The purpose of this paper is to improve the efficiency of multi-objective topology optimization using a genetic algorithm (GA) with bar-system representation. We proposed a new GA using an elite initial population obtained from a Solid Isotropic Material with Penalization (SIMP) using a weighted sum method. SIMP with a weighted sum method is one of the most established methods using sensitivity analysis. Although the implementation of the SIMP method is straightforward and computationally effective, it may be difficult to find a complete Pareto-optimal set in a multi-objective optimization problem. In this study, to build a more convergent and diverse global Pareto-optimal set and reduce the GA computational cost, some individuals, with similar topology to the local optimum solution obtained from the SIMP using the weighted sum method, were introduced for the initial population of the GA. The proposed method was applied to a structural topology optimization example and the results of the proposed method were compared with those of the traditional method using standard random initialization for the initial population of the GA.

A study on the optimal design of rope way (索道線路의 最適設計에 대한 硏究)

  • 최선호;박용수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.26-35
    • /
    • 1987
  • As an attempt to make the multi-objection for the line design of the rope way, the resulted formulas from the catenary curve as exact ones were summarized, and it was found out that the Kuhn-Tucker's optimality conditions and regions of the objective functions can analytically be expressed with dimensionless parameters. The Pareto's optimum solution set was analytically obtained through the objective function-the minimum relation of $W^{*}$, and $W^{*}$ is a trade-off relation. From this, The dimension of a rope and the value of an initial tension that are the standard in design of the rope way were determined. It was concluded that $V^{*}$ should become minimum, and that the ratio of the dimension of rope to the value of and initial tension become larger than superposition factor corresponding to curve AB.to curve AB.

Generation of Pareto Sets based on Resource Reduction for Multi-Objective Problems Involving Project Scheduling and Resource Leveling (프로젝트 일정과 자원 평준화를 포함한 다목적 최적화 문제에서 순차적 자원 감소에 기반한 파레토 집합의 생성)

  • Jeong, Woo-Jin;Park, Sung-Chul;Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.79-86
    • /
    • 2020
  • To make a satisfactory decision regarding project scheduling, a trade-off between the resource-related cost and project duration must be considered. A beneficial method for decision makers is to provide a number of alternative schedules of diverse project duration with minimum resource cost. In view of optimization, the alternative schedules are Pareto sets under multi-objective of project duration and resource cost. Assuming that resource cost is closely related to resource leveling, a heuristic algorithm for resource capacity reduction (HRCR) is developed in this study in order to generate the Pareto sets efficiently. The heuristic is based on the fact that resource leveling can be improved by systematically reducing the resource capacity. Once the reduced resource capacity is given, a schedule with minimum project duration can be obtained by solving a resource-constrained project scheduling problem. In HRCR, VNS (Variable Neighborhood Search) is implemented to solve the resource-constrained project scheduling problem. Extensive experiments to evaluate the HRCR performance are accomplished with standard benchmarking data sets, PSPLIB. Considering 5 resource leveling objective functions, it is shown that HRCR outperforms well-known multi-objective optimization algorithm, SPEA2 (Strength Pareto Evolutionary Algorithm-2), in generating dominant Pareto sets. The number of approximate Pareto optimal also can be extended by modifying weight parameter to reduce resource capacity in HRCR.

Optimal Supply Chain formation using Agent Negotiation in SET Model based Make-To-Order (최적 공급사슬 구성을 위한 에이전트 협상방법론 개발)

  • Kim Hyun-Soo;Cho Jae-Hyung;Choi Hyung-Rim;Hong Soon-Goo
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.2
    • /
    • pp.99-123
    • /
    • 2006
  • In an effect to composite an optimal supply chain, this study has introduced an agent-based negotiation as a method to assign a lot of orders to a large number of participants. As a resources allocation mechanism to form a strategic cooperation based on information sharing between supply chain members(buyers, manufacturers, suppliers), this agent negotiation provides coordination functions allowing all participants to make a profit and accomplishing Pareto optimum solution from the viewpoint of a whole supply chain. A SET model-based scheduling takes into consideration both earliness production cost and tardiness production cost, along with a competitive relationship between multiple participants. This study has tried to prove that the result of an agent-based negotiation is a Pareto optimal solution under the dynamic supply chain environment, establishing the mathematical formulation for a performance test, and making a comparison with the heuristic Branch & Bound method.

  • PDF