• 제목/요약/키워드: Pareto Optimal Set

검색결과 80건 처리시간 0.022초

Internet Shopping Optimization Problem With Delivery Constraints

  • Chung, Ji-Bok
    • 유통과학연구
    • /
    • 제15권2호
    • /
    • pp.15-20
    • /
    • 2017
  • Purpose - This paper aims to suggest a delivery constrained internet shopping optimization problem (DISOP) which must be solved for online recommendation system to provide a customized service considering cost and delivery conditions at the same time. Research design, data, and methodology - To solve a (DISOP), we propose a multi-objective formulation and a solution approach. By using a commercial optimization software (LINDO), a (DISOP) can be solved iteratively and a pareto optimal set can be calculated for real-sized problem. Results - We propose a new research problem which is different with internet shopping optimization problem since our problem considers not only the purchasing cost but also delivery conditions at the same time. Furthermore, we suggest a multi-objective mathematical formulation for our research problem and provide a solution approach to get a pareto optimal set by using numerical example. Conclusions - This paper proposes a multi-objective optimization problem to solve internet shopping optimization problem with delivery constraint and a solution approach to get a pareto optimal set. The results of research will contribute to develop a customized comparison and recommendation system to help more easy and smart online shopping service.

Optimum Design of Integer and Fractional-Order PID Controllers for Boost Converter Using SPEA Look-up Tables

  • Amirahmadi, Ahmadreza;Rafiei, Mohammadreza;Tehrani, Kambiz;Griva, Giovanni;Batarseh, Issa
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.160-176
    • /
    • 2015
  • This paper presents a method of designing optimal integer- and fractional-order proportional-integral-derivative (FOPID) controllers for a boost converter to gain a set of favorable characteristics at various operating points. A Pareto-based multi-objective optimization approach called strength Pareto evolutionary algorithm (SPEA) is used to obtain fast and low overshoot start-up and dynamic responses and switching stability. The optimization approach generates a set of optimal gains called Pareto set, which corresponds to a Pareto front. The Pareto front is a set of optimal results for objective functions. These results provide designers with a trade-off look-up table, in which they can easily choose any of the optimal gains based on design requirements. The SPEA also overcomes the difficulties of tuning the FOPID controller, which is an extension to the classic integer-order PID controllers and potentially promises better results. The proposed optimized FOPID controller provides an excellent start-up response and the desired dynamic response. This paper presents a detailed comparison of the optimum integer- and the fractional-order PID controllers. Extensive simulation and experimental results prove the superiority of the proposed design methodology to achieve a wide set of desired technical goals.

파레토 인공생명 최적화 알고리듬의 제안 (Development of Pareto Artificial Life Optimization Algorithm)

  • 송진대;양보석
    • 대한기계학회논문집A
    • /
    • 제30권11호
    • /
    • pp.1358-1368
    • /
    • 2006
  • This paper proposes a Pareto artificial life algorithm for solving multi-objective optimization problems. The artificial life algorithm for optimization problem with a single objective function is improved to handle Pareto optimization problem through incorporating the new method to estimate the fitness value for a solution and the Pareto list to memorize and to improve the Pareto optimal set. The proposed algorithm was applied to the optimum design of a journal bearing which has two objective functions. The Pareto front and the optimal solution set for the application were presented to give the possible solutions to a decision maker or a designer. Furthermore, the relation between linearly combined single-objective optimization problem and Pareto optimization problem has been studied.

다목적 함수 최적화를 위한 게임 모델에 기반한 공진화 알고리즘에서의 해집단의 다양성에 관한 연구 (Study on Diversity of Population in Game model based Co-evolutionary Algorithm for Multiobjective optimization)

  • 이희재;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.869-874
    • /
    • 2007
  • 다목적 함수의 최적화 문제(Multiobjective optimization problems)의 경우에는 하나의 최적해가 존재하는 것이 아니라 '파레토 최적해 집합(Pareto optimal set)'이라고 알려진 해들의 집합이 존재한다. 이러한 이상적 파레토 최적해 집합과 가까운 최적해를 찾기 위한 다양한 해탐색 능력은 진화 알고리즘의 성능을 결정한다. 본 논문에서는 게임 모델에 기반한 공진화 알고리즘(GCEA: Game model based Co-Evolutionary Algorithm)에서 해집단의 다양성을 유지하여, 다양한 비지배적 파레토 대안해(non-dominated alternatives)들을 찾기 위한 방법을 제안한다.

Optimal Controller Design for Single-Phase PFC Rectifiers Using SPEA Multi-Objective Optimization

  • Amirahmadi, Ahmadreza;Dastfan, Ali;Rafiei, Mohammadreza
    • Journal of Power Electronics
    • /
    • 제12권1호
    • /
    • pp.104-112
    • /
    • 2012
  • In this paper a new method for the design of a simple PI controller is presented and it has been applied in the control of a Boost based PFC rectifier. The Strength Pareto evolutionary algorithm, which is based on the Pareto Optimality concept, used in Game theory literature is implemented as a multi-objective optimization approach to gain a good transient response and a high quality input current. In the proposed method, the input current harmonics and the dynamic response have been assumed as objective functions, while the PI controller's gains of the PFC rectifier (Kpi, Tpi) are design variables. The proposed algorithm generates a set of optimal gains called a Pareto Set corresponding to a Pareto Front, which is a set of optimal results for the objective functions. All of the Pareto Front points are optimum, but according to the design priority objective function, each one can be selected. Simulation and experimental results are presented to prove the superiority of the proposed design methodology over other methods.

인공생명최적화알고리듬에 의한 저널베어링의 파레토 최적화 (Pareto optimum design of journal bearings by artificial life algorithm)

  • 송진대;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.869-874
    • /
    • 2005
  • This paper proposes the Pareto artificial life algorithm for a multi-objective function optimization problem. The artificial life algorithm for a single objective function optimization problem is improved through incorporating the new method to estimate the fitness value fur a solution and the Pareto list to memorize and to improve the Pareto optimal set. The proposed algorithm is applied to the optimum design of a Journal bearing which has two objective functions. The Pareto front and the optimal solution set for the application are reported to present the possible solutions to a decision maker or a designer.

  • PDF

Pareto 최적점 기반 다목적함수 기법에 의한 이중선각유조선의 최적 구조설계 (Optimum Structural Design of D/H Tankers by using Pareto Optimal based Multi-objective function Method)

  • 나승수;염재선;한상민
    • 대한조선학회논문집
    • /
    • 제42권3호
    • /
    • pp.284-289
    • /
    • 2005
  • A structural design system is developed for the optimum design of double hull tankers based on the multi-objective function method. As a multi-objective function method, Pareto optimal based random search method is adopted to find the minimum structural weight and fabrication cost. The fabrication cost model is developed by considering the welding technique, welding poses and assembly stages to manage the fabrication man-hour and process. In this study, a new structural design is investigated due to the rapidly increased material cost. Several optimum structural designs on the basis of high material cost are carried out based on the Pareto optimal set obtained by the random search method. The design results are compared with existing ship, which is designed under low material cost.

환경특성을 반영한 급전계획의 파레토 최적화기법 개발 (Development of Pareto-Optimal Technique for Generation Planning According to Environmental Characteristics in term)

  • 이범;김용하;최상규
    • 에너지공학
    • /
    • 제13권2호
    • /
    • pp.128-132
    • /
    • 2004
  • 본 연구에서는 급전계획의 파레토최적해를 구하는 새로운 방법을 제시하였다. 이를 위하여, 고찰기간에 대해 총 오염물질배출량을 고려하여 최적경제부하배분을 할 수 있는 동적계획법을 도입하였으며, 최적급전계획의 결과를 군으로 얻을 수 있는 파레토최적해를 얻는 방법을 개발하였다. 이 결과, 의사결정자는 파레토최적해를 얻을 수 있으며, 이중에서 하나의 해를 선택하여 사용할 수 있게 되었다. 제안한 방법을 시험계통에 적용하여 유용성을 검증하였다.

다목적함수 최적화를 위한 새로운 진화적 방법 연구 (A Study of New Evolutionary Approach for Multiobjective Optimization)

  • 심문보;서명원
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.987-992
    • /
    • 2002
  • In an attempt to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Pareto-optimal points, instead of a single point. In this paper, pareto-based Continuous Evolutionary Algorithms for Multiobjective Optimization problems having continuous search space are introduced. This algorithm is based on Continuous Evolutionary Algorithms to solve single objective optimization problems with a continuous function and continuous search space efficiently. For multiobjective optimization, a progressive reproduction operator and a niche-formation method fur fitness sharing and a storing process for elitism are implemented in the algorithm. The operator and the niche formulation allow the solution set to be distributed widely over the Pareto-optimal tradeoff surface. Finally, the validity of this method has been demonstrated through a numerical example.

Clustering Parts Based on the Design and Manufacturing Similarities Using a Genetic Algorithm

  • Lee, Sung-Youl
    • 한국산업정보학회논문지
    • /
    • 제16권4호
    • /
    • pp.119-125
    • /
    • 2011
  • The part family (PF) formation in a cellular manufacturing has been a key issue for the successful implementation of Group Technology (GT). Basically, a part has two different attributes; i.e., design and manufacturing. The respective similarity in both attributes is often conflicting each other. However, the two attributes should be taken into account appropriately in order for the PF to maximize the benefits of the GT implementation. This paper proposes a clustering algorithm which considers the two attributes simultaneously based on pareto optimal theory. The similarity in each attribute can be represented as two individual objective functions. Then, the resulting two objective functions are properly combined into a pareto fitness function which assigns a single fitness value to each solution based on the two objective functions. A GA is used to find the pareto optimal set of solutions based on the fitness function. A set of hypothetical parts are grouped using the proposed system. The results show that the proposed system is very promising in clustering with multiple objectives.