• Title/Summary/Keyword: Pareto Efficiency

Search Result 82, Processing Time 0.025 seconds

An Optimized PI Controller Design for Three Phase PFC Converters Based on Multi-Objective Chaotic Particle Swarm Optimization

  • Guo, Xin;Ren, Hai-Peng;Liu, Ding
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.610-620
    • /
    • 2016
  • The compound active clamp zero voltage soft switching (CACZVS) three-phase power factor correction (PFC) converter has many advantages, such as high efficiency, high power factor, bi-directional energy flow, and soft switching of all the switches. Triple closed-loop PI controllers are used for the three-phase power factor correction converter. The control objectives of the converter include a fast transient response, high accuracy, and unity power factor. There are six parameters of the controllers that need to be tuned in order to obtain multi-objective optimization. However, six of the parameters are mutually dependent for the objectives. This is beyond the scope of the traditional experience based PI parameters tuning method. In this paper, an improved chaotic particle swarm optimization (CPSO) method has been proposed to optimize the controller parameters. In the proposed method, multi-dimensional chaotic sequences generated by spatiotemporal chaos map are used as initial particles to get a better initial distribution and to avoid local minimums. Pareto optimal solutions are also used to avoid the weight selection difficulty of the multi-objectives. Simulation and experiment results show the effectiveness and superiority of the proposed method.

Elite-initial population for efficient topology optimization using multi-objective genetic algorithms

  • Shin, Hyunjin;Todoroki, Akira;Hirano, Yoshiyasu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.324-333
    • /
    • 2013
  • The purpose of this paper is to improve the efficiency of multi-objective topology optimization using a genetic algorithm (GA) with bar-system representation. We proposed a new GA using an elite initial population obtained from a Solid Isotropic Material with Penalization (SIMP) using a weighted sum method. SIMP with a weighted sum method is one of the most established methods using sensitivity analysis. Although the implementation of the SIMP method is straightforward and computationally effective, it may be difficult to find a complete Pareto-optimal set in a multi-objective optimization problem. In this study, to build a more convergent and diverse global Pareto-optimal set and reduce the GA computational cost, some individuals, with similar topology to the local optimum solution obtained from the SIMP using the weighted sum method, were introduced for the initial population of the GA. The proposed method was applied to a structural topology optimization example and the results of the proposed method were compared with those of the traditional method using standard random initialization for the initial population of the GA.

Optimizing Bi-Objective Multi-Echelon Multi-Product Supply Chain Network Design Using New Pareto-Based Approaches

  • Jafari, Hamid Reza;Seifbarghy, Mehdi
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.374-384
    • /
    • 2016
  • The efficiency of a supply chain can be extremely affected by its design which includes determining the flow pattern of material from suppliers to costumers, selecting the suppliers, and defining the opened facilities in network. In this paper, a multi-objective multi-echelon multi-product supply chain design model is proposed in which several suppliers, several manufacturers, several distribution centers as different stages of supply chain cooperate with each other to satisfy various costumers' demands. The multi-objectives of this model which considered simultaneously are 1-minimize the total cost of supply chain including production cost, transportation cost, shortage cost, and costs of opening a facility, 2-minimize the transportation time from suppliers to costumers, and 3-maximize the service level of the system by minimizing the maximum level of shortages. To configure this model a graph theoretic approach is used by considering channels among each two facilities as links and each facility as the nodes in this configuration. Based on complexity of the proposed model a multi-objective Pareto-based vibration damping optimization (VDO) algorithm is applied to solve the model and finally non-dominated sorting genetic algorithm (NSGA-II) is also applied to evaluate the performance of MOVDO. The results indicated the effectiveness of the proposed MOVDO to solve the model.

Multiobjective Optimal Reactive Power Flow Using Elitist Nondominated Sorting Genetic Algorithm: Comparison and Improvement

  • Li, Zhihuan;Li, Yinhong;Duan, Xianzhong
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.70-78
    • /
    • 2010
  • Elitist nondominated sorting genetic algorithm (NSGA-II) is adopted and improved for multiobjective optimal reactive power flow (ORPF) problem. Multiobjective ORPF, formulated as a multiobjective mixed integer nonlinear optimization problem, minimizes real power loss and improves voltage profile of power grid by determining reactive power control variables. NSGA-II-based ORPF is tested on standard IEEE 30-bus test system and compared with four other state-of-the-art multiobjective evolutionary algorithms (MOEAs). Pareto front and outer solutions achieved by the five MOEAs are analyzed and compared. NSGA-II obtains the best control strategy for ORPF, but it suffers from the lower convergence speed at the early stage of the optimization. Several problem-specific local search strategies (LSSs) are incorporated into NSGA-II to promote algorithm's exploiting capability and then to speed up its convergence. This enhanced version of NSGA-II (ENSGA) is examined on IEEE 30 system. Experimental results show that the use of LSSs clearly improved the performance of NSGA-II. ENSGA shows the best search efficiency and is proved to be one of the efficient potential candidates in solving reactive power optimization in the real-time operation systems.

A Study on the Economic Efficiency of Capital Market (자본시장(資本市場)의 경제적(經濟的) 효율성(效率性)에 관한 연구(硏究))

  • Nam, Soo-Hyun
    • The Korean Journal of Financial Management
    • /
    • v.2 no.1
    • /
    • pp.55-75
    • /
    • 1986
  • This article is to analyse the economic efficiency of capital market, which plays a role of resource allocation in terms of financial claims such as stock and bond. It provides various contributions to the welfare theoretical aspects of modern capital market theory. The key feature that distinguishes the theory described here from traditional welfare theory is the presence of uncertainty. Securities has time dimensions and the state and outcome of the future are really uncertain. This problem resulting from this uncertainty can be solved by complete market, but it has a weak power to explain real stock market. Capital Market is faced with the uncertainity because it is a kind of incomplete market. Individuals and firms in capital market made their consumption-investment decision by their own criteria, i. e. the maximization of expected utility form intertemporal consumption and the maximization of the market value of firm. We noted that allocative decisions that had to be made in the economy could be naturally subdivided into two groups. One set of decisions concerned the allocation of first-period resources among consumption $C_i$, investment in risky firms $I_j$, and riskless investment M. The other decisions concern the distribution among individuals of income available in the second period $Y_i(\theta)$. Corresponing to this grouping, the theoretical analysis of efficiency has also been dichotomized. The optimality of the distribution of output in the second period is distributive efficiency" and the optimality of the allocation of first-period resources is 'the efficiency of investment'. We have found in the distributive efficiency that the conditions for attainability is the same as the conditions for market optimality. The necessary and sufficient conditions for attainability or market optimality is that (1) all utility functions are such that -$\frac{{U_i}^'(Y_i)}{{U_i}^"(Y_i)}={\mu}_i+{\lambda}Y_i$-linear risk tolerance function where the coefficients ${\mu}_i$ and $\lambda$ are independent of $Y_i$, and (2) there are homogeneous expectations, i. e. ${\Large f}_i(\theta)={\Large f}(\theta)$ for every i. On the other hand, the efficiency of investment has disagreement about optimal investment level. The investment level for market rule will not generally lead to Pareto-optimal allocation of investment. This suboptimality is caused by (1)the difference of Diamond's decomposable production function and mean-variance valuation model and (2) the selection of exelusive investment or competitive investment. In conclusion, this article has made an analysis of conditions and processes of Pareto-optimal allocation of resources in capital marker and tried to connect with significant issues in modern finance.

  • PDF

A Study on the Multi-Objective Optimization of Impeller for High-Power Centrifugal Compressor

  • Kang, Hyun-Su;Kim, Youn-Jea
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.2
    • /
    • pp.143-149
    • /
    • 2016
  • In this study, a method for the multi-objective optimization of an impeller for a centrifugal compressor using fluid-structure interaction (FSI) and response surface method (RSM) was proposed. Numerical simulation was conducted using ANSYS CFX and Mechanical with various configurations of impeller geometry. Each design parameter was divided into 3 levels. A total of 15 design points were planned using Box-Behnken design, which is one of the design of experiment (DOE) techniques. Response surfaces based on the results of the DOE were used to find the optimal shape of the impeller. Two objective functions, isentropic efficiency and equivalent stress were selected. Each objective function is an important factor of aerodynamic performance and structural safety. The entire process of optimization was conducted using the ANSYS Design Xplorer (DX). The trade-off between the two objectives was analyzed in the light of Pareto-optimal solutions. Through the optimization, the structural safety and aerodynamic performance of the centrifugal compressor were increased.

Multi-Objective Optimal Design of a NEMA Design D Three-phase Induction Machine Utilizing Gaussian-MOPSO Algorithm

  • Zhang, Dianhai;Ren, Ziyan;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.184-189
    • /
    • 2014
  • This paper presents a multi-objective optimization approach to design rotor slot geometry of three-phase squirrel cage induction machine to achieve NEMA design D torque-speed (T-S) characteristics with high efficiency. The multi-objective Particle Swarm Optimization (MOPSO) algorithm combined with the adaptive response surface method and Latin hypercube sampling strategy is applied to obtain the Pareto optimal designs. In order to demonstrate the validity of the suggested optimal algorithm, an application to rotor slot design of three-phase induction motor is presented.

Energy-Efficient Resource Allocation in Multi-User AF Two-Way Relay Channels

  • Kim, Seongjin;Yu, Heejung
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.629-638
    • /
    • 2016
  • In this paper, we investigate an energy-efficient resource allocation problem in a two-way relay (TWR) network consisting of multiple user pairs and an amplify-and-forward (AF) relay. As the users and relay have individual energy efficiencies (EE), we formulate a multi-objective optimization problem (MOOP). A single-objective optimization problem (SOOP) of the MOOP is introduced using a weighted-sum method, which achieves a single Pareto optimal point of the MOOP. To derive the algorithm for the SOOP, we propose a more tractable equivalent problem using the Karush-Kuhn-Tucker conditions of the SOOP, which guarantees convergence at the local optimal points. The proposed equivalent problem can be efficiently solved by the proposed iterative algorithm. Numerical results demonstrate the effectiveness of the proposed algorithm in achieving the optimal EE in multi-user AF TWR networks.

Toward Net-Zero Energy Retrofitting: Building-Integrated Photovoltaic Curtainwalls

  • Kim, Kyoung Hee;Im, Ok-Kyun
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.1
    • /
    • pp.35-43
    • /
    • 2021
  • With the rapid urbanization and growing energy use intensity in the built environment, the glazed curtainwall has become ever more important in the architectural practice and environmental stewardship. Besides its energy efficiency roles, window has been an important transparent component for daylight penetration and a view-out for occupant satisfaction. In response to the climate crisis caused by the built environment, this research focuses on the study of net-zero energy retrofitting by using a new building integrated photovoltaic (BIPV) curtainwall as a sustainable alternative to conventional window systems. Design variables such as building orientations, climate zones, energy attributes of BIPV curtainwalls, and glazed area were studied, to minimize energy consumption and discomfort hours for three cities representing hot (Miami, FL), mixed (Charlotte, NC), and cold (Minneapolis, MN). Parametric analysis and Pareto solutions are presented to provide a comprehensive explanation of the correlation between design variables and performance objectives for net-zero energy retrofitting applications.

Optimization of injection molding process for car fender in consideration of energy efficiency and product quality

  • Park, Hong Seok;Nguyen, Trung Thanh
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.4
    • /
    • pp.256-265
    • /
    • 2014
  • Energy efficiency is an essential consideration in sustainable manufacturing. This study presents the car fender-based injection molding process optimization that aims to resolve the trade-off between energy consumption and product quality at the same time in which process parameters are optimized variables. The process is specially optimized by applying response surface methodology and using non-dominated sorting genetic algorithm II (NSGA II) in order to resolve multi-object optimization problems. To reduce computational cost and time in the problem-solving procedure, the combination of CAE-integration tools is employed. Based on the Pareto diagram, an appropriate solution is derived out to obtain optimal parameters. The optimization results show that the proposed approach can help effectively engineers in identifying optimal process parameters and achieving competitive advantages of energy consumption and product quality. In addition, the engineering analysis that can be employed to conduct holistic optimization of the injection molding process in order to increase energy efficiency and product quality was also mentioned in this paper.