• 제목/요약/키워드: Parasitic phase

Search Result 79, Processing Time 0.024 seconds

An Active Balun Design for Application to RFID Reader at 2.45GHz (2.45GHz 대역 RFID Reader 에 적용 가능한 능동형 발룬 설계)

  • Jung, Hyo-Bin;Lim, Tae-Seo;Lee, Dal-Ho;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.423-426
    • /
    • 2007
  • An active Balun is designed for RFID reader at 2.45GHz. The Balun is integrated inside the receiver, then the LNA and mixer can be connected. The unbalanced LNA output signal is transformed to a balanced signal at the input mixer The RF mixer and LO mixer, by using this balun. The Balun provided a balanced signal with two output stage, gain mismatch is 0.116dB. The phase show a good behavior with $163.918^{\circ}$,$-16.609^{\circ}$. The phase mismatch is about $0.527^{\circ}$. The tight difference between the gain and phase on each brancd, is because of the used capacitor and integrated inductor and the other parasitic element inside the balun.

  • PDF

Single-Phase Transformerless PV Power Conditioning Systems with Low Leakage Current and Active Power Decoupling Capability

  • Nguyen, Hoang Vu;Park, Do-Hyeon;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.997-1006
    • /
    • 2018
  • This paper proposes a transformerless photovoltaic (PV) power converter system based on the DC/AC boost inverter, which can solve the leakage current and second-order ripple power issues in single-phase grid-connected PV inverters. In the proposed topology, the leakage current can be decreased remarkably since most of the common-mode currents flow through the output capacitor, by-passing parasitic capacitors, and grounding resistors. In addition, the inherent ripple power component in the single-phase grid inverter can be suppressed without adding any extra components. Therefore, bulky electrolytic capacitors can be replaced by small film capacitors. The effectiveness of the proposed topology has been verified by simulation and experimental results for a 1-kW PV PCS.

A Study on Battery Chargers for the next generation high speed train using the Phase-shift Full-bridge DC/DC Converter (위상전이 풀-브리지 DC/DC 컨버터를 이용한 차세대 고속 전철용 Battery Charger에 관한 연구)

  • Cho, Han-Jin;Lee, Won-Cheol;Lee, Sang-Seok;Kim, Tae-Hwan;Won, Chung-Yuen
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.623-628
    • /
    • 2009
  • There is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. Many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation(PWM) converter. Especially, the phase shift full bridge zero voltage switching PWM techniques are thought most desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

Accurate Characterization of T/R Modules with Consideration of Amplitude/Phase Cross Effect in AESA Antenna Unit

  • Ahn, Chang-Soo;Chon, Sang-Mi;Kim, Seon-Joo;Kim, Young-Sik;Lee, Juseop
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.417-424
    • /
    • 2016
  • In this paper, an accurate characterization of a fabricated X-band transmit/receive module is described with the process of generating control data to correct amplitude and phase deviations in an active electronically scanned array antenna unit. In the characterization, quantization errors (from both a digitally controlled attenuator and a phase shifter) are considered using not theoretical values (due to discrete sets of amplitude and phase states) but measured values (of which implementation errors are a part). By using the presented procedure for the characterization, each initial control bit of both the attenuator and the phase shifter is closest to the required value for each array element position. In addition, each compensated control bit for the parasitic cross effect between amplitude and phase control is decided using the same procedure. Reduction of the peak sidelobe level of an array antenna is presented as an example to validate the proposed procedure.

Dynamic Analysis of Single-Phase Induction Motor Considering Parasitic Effects (기생효과를 고려한 단상유도전동기의 동특성 해석)

  • Kim, Byung-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.936-938
    • /
    • 2005
  • 본 논문은 실제 단상유도전동기의 정확한 특성예측을 위해 각종 기생성분, 즉 자기회로 포화 및 고조파에 의한 영향을 분석하였다. 특히 기동특성에 큰 영향을 주는 공간고조파 성분의 영향을 고려하기 위해 슬롯과 권선분포에 대한 고조파분석 및 고조파 등가회로를 구현하였다. 이로부터 동특성해석을 시행함으로써 공간고조파에 의한 기동에서의 기생토크효과를 분석하였다.

  • PDF

Design and fabrication of Ka-Band Analog Phase Shifter using GaAs Hyperabrupt Junction Varactor Diodes and Reactance Matching (GaAs Hyperabrupt Junction 바랙터 다이오드와 리액턴스 정합을 이용한 Ka-Band 아날로그 위상변화기의 설계)

  • ;Seong-Ik Cho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.521-526
    • /
    • 2003
  • This paper describes performance data and design information on a reflection-type analog phase shifter used in Ka-band. Arranging a couple of GaAs hyperabrupt junction varactor diode parallel in a circuit, and applying reactance matching method accordingly, it is possible to 831 a large the phase shift. Design equation is formulated theoretically. Since the assembly process is important in Ka-band, this paper also includes the assembly process that is essential to minimize the generation of parasitic elements during the assembly process. It is obtained variable phase shift 220$^{\circ}$${\pm}$7$^{\circ}$ and insertion loss 5 dB${\pm}$1 dB as a measured result larger than the existing figure in Ka-band.

Characteristics of Utility Transformer on Household Single-Phase ESS-PCS According to LC Filter Location (주택용 단상 ESS-PCS의 LC 필터위치에 따른 상용변압기의 특성)

  • Kim, Yong-Jung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.101-105
    • /
    • 2018
  • Shortage of electric power occurs frequently along with increased electric power demand. ESS is a precaution to solve this issue. Household ESS has a capacity of approximately 3 kW/7 kWh. Household ESS batteries are typically designed with nominal voltages between 40 and 50 V. To connect household ESS with a 220 V AC system, low battery voltages in power conditioning system (PCS) should be boosted. To boost low battery voltage and match it with AC grid voltage, the use of a transformer for a commercial frequency can be considered. To attenuate switching harmonics of the household single-phase ESS-PCS, LC filter can be installed in two positions: on the primary side or on the secondary side of a transformer. A method has been used generally in single-phase inverters for the ESS-PCS. In another method, however, the output efficiency of the ESS-PCS may be decreased. Parasitic components of the transformer can affect voltage losses, when the square wave with the switching frequency in the ESS-PCS is passed through the transformer windings. In this work, the characteristics of the transformer according to the position of an LC filter are investigated for household single-phase ESS-PCS.

An Active Cancellation Method for the Common Mode Current of the Three-Phase Induction Motor Drives (3상 유도전동기 구동장치의 동상모드 전류 능동 제거법)

  • Uzzaman, Tawfique;Kim, Unghoe;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.96-97
    • /
    • 2019
  • Pulse Width Modulation (PWM) is a widely adopted technique to drive the motor using the voltage source inverters. Since they generate high frequency Common Mode (CM) Voltage, a high shaft voltage in induction motor is induced which leads to parasitic capacitive currents causing adverse effects such as premature deterioration of ball bearings and high levels of electromagnetic emissions. This paper presents an Active Cancellation Circuit (ACC) which can significantly reduce the CM voltage hence the common mode current in the three phase induction motor drives. In the proposed method the CM voltage is detected by the capacitors and applied to the frame of the motor to cancel the CM voltage hence the CM current. Unlike the conventional methods the proposed method does not insert the transformer in between the inverter and motor, a high power rating three phase transformer is not required and no losses associated with it. In addition the proposed method is applicable to any kind of PWM motor drives regardless of their PWM methods. The effectiveness of the proposed method is proved by the experiments with a three phase induction motor (1.1kW 415V/60Hz) combined with a three phase voltage source inverter modulated by the Space Vector Modulation (SVM).

  • PDF

The Design of Electronically Beam Steeling Array Antenna Using 4 Parasitic Elements (4개의 기생 소자를 이용한 전자적인 빔 조향 배열 안테나 설계)

  • Kim, Young-Goo;Choi, Ik-Guen;Kim, Tae-Hong;You, Jong-Jun;Kang, Sang-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.167-173
    • /
    • 2009
  • This paper proposes an electronically beam steering array antenna, consisting of single fed active element and 4 parasitic elements, operating in 5.8 GHz ISM band. Beam steering can be achieved by controlling the reactance of the variable reactance control circuit connected to the load of the parasitic elements without using the high cost phase shifters. The proposed antenna realizes ${\pm}30^{\circ}$ beam scanning of E-plane and H-plane with the below -10 dB return loss in ISM band. The gain of the $6.18{\sim}7.53\;dBi$ in E-plane and $7.022{\sim}7.779\;dBi$ in H-plane is shown in the scanning range.

Soft-Switched PWM DC-DC High-Power Converter with Quasi Resonant-Poles and Parasitic Reactive Resonant Components of High-Voltage Transformer (부분 공진형 소프트 스위칭 PWM DC-DC 고전압 컨버터)

  • 김용주;신대철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.384-394
    • /
    • 1999
  • This paper deals with a fixed frequency full-bridge inverter type DC-DC high-power converter with high frequency high voltage(HFHV) transformer-coupled stage, which operates under quasi-resonant ZVS transition priciple in spite of a wide PWM-based voltage regulation processing and largely-changed load conditions. This multi-resonant(MR) converter topology is composed of a series capacitor-connected parallel resonant tank which makes the most of parasitic circuit reactive components of HFHV transformer and two additional quasi-resonant pole circuits incorporated into the bridge legs. The soft-switching operation and practical efficacy of this new converter circuit using the latest IGBTs are actually ascertained through 50kV trially-produced converter system operating using 20kHz/30kHz high voltage(HV) transformers which is applied for driving the diagnostic HV X-ray tube load in medical equipments. It is proved from a practical point of view that the switching losses of IGBTs and their electrical dynamic stresses relating to EMI noise can be considerably reduced under a high frequency(HF) switching-based phase-shift PWM control process for a load setting requirements.

  • PDF