• Title/Summary/Keyword: Parametric-based system

Search Result 627, Processing Time 0.035 seconds

The Simulation and Experiment of Flexible Media with High Exit Velocity (고속의 출구속도를 가지는 유연매체의 거동해석 및 실험)

  • Hong, Sung-Kwon;Jee, Jung-Geun;Jang, Yong-Hoon;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.380-383
    • /
    • 2006
  • The media transport system is used in a printer, a ATM(Automated Tellor Machine), and so on. The media transport system has many problems through miniaturization and rapid transportation of these machines. In the paper feeding mechanism, it is important to feed the sheet without jamming under any conditions. To avoid sheet jamming, first we need to predict the behavior of the sheet exactly. In this paper, the analysis of media behavior is based on J. Stolte's studies. In all of OA machines, a flexible beam or plate is pushed from the channel. The motion may be constrained by guides. This leads to a transient and geometrically nonlinear problem. The behavior of paper is simulated by dynamic elastica theory. The shape of guide is represented by parametric cubic curve. But J. Stolte's studies did not considered contact condition between sheet and guide. So Klarbring's Model. will be applied. And the analysis of flexible media has to include aerodynamic effect for more exact behavior analysis, because the flexible media can be deformed drastically by a little force. Therefore aerodynamic force must be applied to the governing equation. Lastly, the simulation of this model is performed, and the experiment is performed for verification of this model. The experimental results of low exit velocity are consistent with the simulation results, however experimental results of high exit velocity do not agree well with analytical results. The reason is that there may be other effects like nip Phenomena

  • PDF

Evaluation of Dynamic p-y Curve Based on the Numerical Analysis (수치해석기반의 동적 p-y 곡선 산정)

  • Park, Jeong-Sik;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.59-73
    • /
    • 2017
  • Numerical analysis using 3D finite element program (PLAXIS 3D) evaluated the interaction of soil - pile structure under dynamic surface loading. The dynamic p-y curve of the 1-g shaking table experiment by numerical analysis was calculated, and the parametric studies were presented by considering the pile-soil condition, the pile tip condition, and the loading condition. The frequency of 1.4 Hz is almost equal to the natural frequency of the pile - soil system. The p and y values of resonance phenomenon are significantly different from the results of other frequencies. The results can be summarized by a third order polynomial function representing the trend line in the p-y curve. In the case of a single pile, the shape of the dominant curve was found to be an ellipse by mathematical proof. The elliptic equation can be used for the dynamic design or analysis of soil-pile system.

Estimating the CoVaR for Korean Banking Industry (한국 은행산업의 CoVaR 추정)

  • Choi, Pilsun;Min, Insik
    • KDI Journal of Economic Policy
    • /
    • v.32 no.3
    • /
    • pp.71-99
    • /
    • 2010
  • The concept of CoVaR introduced by Adrian and Brunnermeier (2009) is a useful tool to measure the risk spillover effect. It can capture the risk contribution of each institution to overall systemic risk. While Adrian and Brunnermeier rely on the quantile regression method in the estimation of CoVaR, we propose a new estimation method using parametric distribution functions such as bivariate normal and $S_U$-normal distribution functions. Based on our estimates of CoVaR for Korean banking industry, we investigate the practical usefulness of CoVaR for a systemic risk measure, and compare the estimation performance of each model. Empirical results show that bank makes a positive contribution to system risk. We also find that quantile regression and normal distribution models tend to considerably underestimate the CoVaR (in absolute value) compared to $S_U$-normal distribution model, and this underestimation becomes serious when the crisis in a financial system is assumed.

  • PDF

Methodology for real-time adaptation of tunnels support using the observational method

  • Miranda, Tiago;Dias, Daniel;Pinheiro, Marisa;Eclaircy-Caudron, Stephanie
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.153-171
    • /
    • 2015
  • The observational method in tunnel engineering allows the evaluation in real time of the actual conditions of the ground and to take measures if its behavior deviates considerably from predictions. However, it lacks a consistent and structured methodology to use the monitoring data to adapt the support system in real time. The definition of limit criteria above which adaptation is required are not defined and complex inverse analysis procedures (Rechea et al. 2008, Levasseur et al. 2010, Zentar et al. 2001, Lecampion et al. 2002, Finno and Calvello 2005, Goh 1999, Cui and Pan 2012, Deng et al. 2010, Mathew and Lehane 2013, Sharifzadeh et al. 2012, 2013) may be needed to consistently analyze the problem. In this paper a methodology for the real time adaptation of the support systems during tunneling is presented. In a first step limit criteria for displacements and stresses are proposed. The methodology uses graphics that are constructed during the project stage based on parametric calculations to assist in the process and when these graphics are not available, since it is not possible to predict every possible scenario, inverse analysis calculations are carried out. The methodology is applied to the "Bois de Peu" tunnel which is composed by two tubes with over 500 m long. High uncertainty levels existed concerning the heterogeneity of the soil and consequently in the geomechanical design parameters. The methodology was applied in four sections and the results focus on two of them. It is shown that the methodology has potential to be applied in real cases contributing for a consistent approach of a real time adaptation of the support system and highlight the importance of the existence of good quality and specific monitoring data to improve the inverse analysis procedure.

An Adaptive Tuned Heave Plate (ATHP) for suppressing heave motion of floating platforms

  • Ruisheng Ma;Kaiming Bi;Haoran Zuo
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.283-299
    • /
    • 2023
  • Structural stability of floating platforms has long since been a crucial issue in the field of marine engineering. Excessive motions would not only deteriorate the operating conditions but also seriously impact the safety, service life, and production efficiency. In recent decades, several control devices have been proposed to reduce unwanted motions, and an attractive one is the tuned heave plate (THP). However, the THP system may reduce or even lose its effectiveness when it is mistuned due to the shift of dominant wave frequency. In the present study, a novel adaptive tuned heave plate (ATHP) is proposed based on inerter by adjusting its inertance, which allows to overcome the limitation of the conventional THP and realize adaptations to the dominant wave frequencies in real time. Specifically, the analytical model of a representative semisubmersible platform (SSP) equipped with an ATHP is created, and the equations of motion are formulated accordingly. Two optimization strategies (i.e., J1 and J2 optimizations) are developed to determine the optimum design parameters of ATHP. The control effectiveness of the optimized ATHP is then examined in the frequency domain by comparing to those without control and controlled by the conventional THP. Moreover, parametric analyses are systematically performed to evaluate the influences of the pre-specified frequency ratio, damping ratio, heave plate sizes, peak periods and wave heights on the performance of ATHP. Furthermore, a Simulink model is also developed to examine the control performance of ATHP in the time domain. It is demonstrated that the proposed ATHP could adaptively adjust the optimum inertance-to-mass ratio by tracking the dominant wave frequencies in real time, and the proposed system shows better control performance than the conventional THP.

Damage detection in truss structures using a flexibility based approach with noise influence consideration

  • Miguel, Leandro Fleck Fadel;Miguel, Leticia Fleck Fadel;Riera, Jorge Daniel;Menezes, Ruy Carlos Ramos De
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.625-638
    • /
    • 2007
  • The damage detection process may appear difficult to be implemented for truss structures because not all degrees of freedom in the numerical model can be experimentally measured. In this context, the damage locating vector (DLV) method, introduced by Bernal (2002), is a useful approach because it is effective when operating with an arbitrary number of sensors, a truncated modal basis and multiple damage scenarios, while keeping the calculation in a low level. In addition, the present paper also evaluates the noise influence on the accuracy of the DLV method. In order to verify the DLV behavior under different damages intensities and, mainly, in presence of measurement noise, a parametric study had been carried out. Different excitations as well as damage scenarios are numerically tested in a continuous Warren truss structure subjected to five noise levels with a set of limited measurement sensors. Besides this, it is proposed another way to determine the damage locating vectors in the DLV procedure. The idea is to contribute with an alternative option to solve the problem with a more widespread algebraic method. The original formulation via singular value decomposition (SVD) is replaced by a common solution of an eigenvector-eigenvalue problem. The final results show that the DLV method, enhanced with the alternative solution proposed in this paper, was able to correctly locate the damaged bars, using an output-only system identification procedure, even considering small intensities of damage and moderate noise levels.

Free vibration of cross-ply laminated plates based on higher-order shear deformation theory

  • Javed, Saira;Viswanathan, K.K.;Izyan, M.D. Nurul;Aziz, Z.A.;Lee, J.H.
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.473-484
    • /
    • 2018
  • Free vibration of cross-ply laminated plates using a higher-order shear deformation theory is studied. The arbitrary number of layers is oriented in symmetric and anti-symmetric manners. The plate kinematics are based on higher-order shear deformation theory (HSDT) and the vibrational behaviour of multi-layered plates are analysed under simply supported boundary conditions. The differential equations are obtained in terms of displacement and rotational functions by substituting the stress-strain relations and strain-displacement relations in the governing equations and separable method is adopted for these functions to get a set of ordinary differential equations in term of single variable, which are coupled. These displacement and rotational functions are approximated using cubic and quantic splines which results in to the system of algebraic equations with unknown spline coefficients. Incurring the boundary conditions with the algebraic equations, a generalized eigen value problem is obtained. This eigen value problem is solved numerically to find the eigen frequency parameter and associated eigenvectors which are the spline coefficients.The material properties of Kevlar-49/epoxy, Graphite/Epoxy and E-glass epoxy are used to show the parametric effects of the plates aspect ratio, side-to-thickness ratio, stacking sequence, number of lamina and ply orientations on the frequency parameter of the plate. The current results are verified with those results obtained in the previous work and the new results are presented in tables and graphs.

Cost-Driven Optimization of Defect-Avoidant Logic Mapping Strategies for Nanowire Reconfigurable Crossbar Architecture (Nanowire Reconfigurable Crossbar 구조를 위한 결함 회피형 로직 재할당 방식의 분석과 총 비용에 따른 최적화 방안)

  • Lee, Jong-Seok;Choi, Min-Su
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.5
    • /
    • pp.257-271
    • /
    • 2010
  • As the end of photolithographic integration era is approaching fast, numerous nanoscale devices and systems based on novel nanoscale materials and assembly techniques are recently emerging. Notably, various reconfigurable architectures with considerable promise have been proposed based on nanowire crossbar structure as the primitive building block. Unfortunately, high-density sys-tems consisting of nanometer-scale elements are likely to have numerous physical imperfections and variations. Therefore, defect-tolerance is considered as one of the most exigent challenges in nanowire crossbar systems. In this work, three different defect-avoidant logic mapping algorithms to circumvent defective crosspoints in nanowire reconfigurable crossbar systems are evaluated in terms of various performance metrics. Then, a novel method to find the most cost-effective repair solution is demonstrated by considering all major repair parameters and quantitatively estimating the performance and cost-effectiveness of each algorithm. Extensive parametric simulation results are reported to compare overall repair costs of the repair algorithms under consideration and to validate the cost-driven repair optimization technique.

A Study on the Development of the Project Management System based on Augmented Reality (BIM 데이터를 적용한 증강현실 기반의 건설관리시스템 개발에 관한 연구)

  • An, Ji-Yean;Choi, Jeong-Min;Kwon, Soon-Ho;Song, Doo-Hyung;Ock, Jong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.3083-3093
    • /
    • 2010
  • The number of Free-Form construction projects are increased by development of 3D parametric modeling technology. The reason of Free-Form Architecture's appearance is advance of digital technology. BIM simulation decision making support is inefficient because it is used in virtual reality. In this study, we developed "AR naviX" which is the digital contents of construction management based on AR for effective decision making support to Free-Form construction project. It reflects construction site by using site picture and video, or Laser scanning data. User feel high reality and is absorbed in augmented reality. So they can reduce the time of decision.

Effects of Symmetrically Arranged Heat Sources on the Heat Release Performance of Extruded-Type Heat Sinks (열원의 대칭 배열에 따른 압출형 히트싱크의 방열성능 연구)

  • Ku, Min Ye;Shin, Hon Chung;Lee, Gyo Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.119-126
    • /
    • 2016
  • In this study we investigated the effects of symmetrically arranged heat sources on the heat release performances of extruded-type heat sinks through experiments and thermal fluid simulations. Also, based on the results we suggested a high-efficiency and cost-effective heat sink for a solar inverter cooling system. In this parametric study, the temperatures between heaters on the base plate and the heat release rates were investigated with respect to the arrangements of heat sources and amounts of heat input. Based on the results we believe that the use of both sides of the heat sink is the preferred method for releasing the heat from the heat source to the ambient environment rather than the use of a single side of the heat sink. Also from the results, it is believed that the symmetric arrangement of the heat sources is recommended to achieve a higher rate of heat transfer. From the results of the thermal fluid simulation, it was possible to confirm the qualitative agreement with the experimental results. Finally, quantitative comparison with respect to mass flow rates, heat inputs, and arrangements of the heat source was also performed.