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Abstract As the end of photolithographic integration era is approaching fast, numerous nanoscale
devices and systems based on novel nanoscale materials and assembly techniques are recently
emerging. Notably, various reconfigurable architectures with considerable promise have been proposed
based on nanowire crossbar structure as the primitive building block. Unfortunately, high-density
sys—tems consisting of nanometer-scale elements are likely to have numerous physical imperfections
and variations. Therefore, defect-tolerance is considered as one of the most exigent challenges in
nanowire crossbar systems. In this work, three different defect-avoidant logic mapping algorithms to
circumvent defective crosspoints in nanowire reconfigurable crossbar systems are evaluated in terms
of various performance metrics. Then, a novel method to find the most cost-effective repair solution
is demonstrated by considering all major repair parameters and quantitatively estimating the perform-
ance and cost-effectiveness of each algorithm. Extensive parametric simulation results are reported to
compare overall repair costs of the repair algorithms under consideration and to validate the
cost-driven repair optimization technique.
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1. Introduction

The end of photolithography as the driver for
Moore’'s Law is predicted within seven to twelve
years [1] and various nanotechnologies are emer—
ging that are expected to continue the technological
revolution in integrated circuits and systems [2].
Recently, numerous nanoscale logic devices have
been proposed based on nanoscale components such
as carbon nanotubes (CNTs) and silicon nanowires
(SiNWs); computing architectures are also being
proposed using them as primitive building blocks.
Unlike conventional CMOS (Complementary Metal-
Oxide Semiconductor), chemically-assembled nanoscale
components (such as CNTs and SiNWs) are unlikely
to be used to construct complex aperiodic struc—
tures due to nondeterministic nature of nanoscale
assembly [3-5].

One of the most promising computational nano-—
technologies is the crossbar-based archi-tecture
[6-13], a two-dimensional array (nanoarray) formed
by the intersection of two orthogonal sets of parallel
and uniformly-spaced nanometer-sized wires, such
as carbon nanotubes (CNTs) and silicon nanowires
(SiNWs). Experiments have shown that such nano-
scale wires can be aligned to construct an array
with nanometer-scale spacing using a form of
directed self-assembly the formed crosspoints of
nanoscale wires can be used as programmable diodes,
memory cells or FETs (Field-Effect Transistors)
[14-18]1.

Nanoscale crossbar systems offer both an oppor-
tunity and a challenge. The opportunity is to
achieve ultra-high density which has never been
achieved by photolithography (a density of 10"
crosspoints per cm’ has been achieved [14]). The
challenge is to make them defect tolerant, since
high-density systems consisting of nanometer-scale
elements assembled in a bottom-up manner are
likely to have many imperfections (much higher
raw fabrication defect densities, as high as 10%,
are expected [19-21]). A computing or storage system
designed on conventional defect basis and top—down

lithographic manufacturing would not be practical
[22]. Ultra-high density fabrication could potentially
be very inexpensive if researchers can actualize a
chemical self-assembly, but such a circuit would
require laborious testing, repair and reconfiguration
processes, implying significant overhead costs. So,
finding the most cost-effective post—fabrication logic
mapping solution is desired.

In this work, inherently-defective nanoscale cross-
bar systems are considered to be repaired by
defect-avoidant logic mapping. Newly assembled
nanowire crossbars are to be tested to locate
Such defective crosspoints
cannot be programmed to "closed” state (ie., also
known as the ON-state); therefore, should be
avoided when a netlist is mapped onto them. Three
simple repair algorithms are considered and ana-
lyzed in terms of repair performance and overhead
costs in this work. In such logic mapping procedure
with defect-avoidance, 100% netlist coverage should
be achieved while minimizing overall overhead

defective crosspoints.

costs such as unused reconfigurable resources, logic
mapping algorithm execution time and the number
of reprogrammed switching crosspoints. To address
this problem, a novel cost-driven repair optimiza-
tion technique has been proposed and validated
through extensive parametric simulations. In the
proposed technique, all design and algorithm para-
meters are considered at the same time to find the
optimized repair solution among various repair
solution candidates. Full coverage of the given
netlist is achieved by the selected optimal  repair
solution while guaranteeing the lowest possible
overhead costs.

This article is organized as follows: In Section II,
all aspects of nanowire reconfigurable crossbar
architectures (such as bottom-up assembly, devices
and architectures) are summa-rized and reviewed.
Then, the reconfigurable crossbar system repair
problem is formally defined in Section HI. Three
different logic mapping algorithms with defect-avoid-
ance are discussed in Section IV. The proposed
cost-driven repair optimization technique and simu-
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lation results are given in Section V. Then, concluding
remarks are made in Section IX.

2. Preliminaries & Review

2.1 Crossbar-Based Nanoscale Devices

CNTs and SiNWs are the most promising build-
ing blocks for nanoscale computing sys-tems. Unfor-
tunately, synthesis of such nanowires and high-
density integration of devices and systems based
on nanowires are fully different from conventional
top—down lithographic fabrication techniques, because
such nanowires must be synthesized first, then
assembled into functional devices and systems in a
bottom-up manner [23]. Fig. 1 illustrates hierarchical
patterning of 1D and 2D nanowire crossbar struc-
tures by fluidic flow method [23].

One or more crosspoints can be grouped together
to form a memory or logic device. Electro-mecha-
nical switching devices using suspended nanotubes
are proposed in [6]. The NT-NT junction is bis-
table with an energy barrier between the two
resistive states (ie., G to 100 KQ). Thus, diode
logic can be realized in nanoscale.

Doped SiNWs exhibit FET (Field Effect Transistor)
behavior [17]. That is, oxide can be grown over the
SINW  to prevent direct electrical contact of a
crossed conductor. The electrical field of one wire
can then be used to gate the other wire by locally

Fig. 1 (a) hierarchical patterning by fluidic flow and
LB method to form: (b} 1D parallel bar
structure, (c) 2D crossbar structure [23]

evacuating a region of the doped SINW of carriers
to prevent conduction. In other words, as the gate
voltage is changed, conductance increases or decre—
ases between the source and drain. CNTs also
demonstrate FET behavior [24-27] and can be also
used as memory devices [6,28] or interconnects [29].

Molecular resonant tunneling diodes, often called
negative differential resistors (NDRs), have also
been realized [30-35]. Devices with useful Peak-to-
valley ratio have been measured at room temper—
ature [32]. These molecules can be used to as the
basis of logic families [36,37] or as the core of a
molecular latch which also provides signal restora—
tion and I/O isolation [4].

Molecular switches and memories are also pro-
posed in [3839]. Organic molecules exist which
have two mechanically distinct parts, such as a
ring and a rod or interlocking rings. Applying a
programming voltage across the molecule adds or
subtracts an electron (oxidation-reduction), shifting
the ring and changing the molecule’s conductivity.
It functions as a non-volatile programmable mole-
cular switch. Used between a metal wire and an
n-type silicon nanowire, the junction acts as a
programmable diode, making an addressable memory
array.

2.2 Nanowire Crossbar Architectures

Using the nanoscale switching, configurable OR
planes can be assembled, with connected wires
acting as low-resistance p—fx—junctions and distant
wires isolated by high resistance (see Fig. 2) [40L
In Fig. 2, two logic functions are implemented by
configuring nanoscale switches at crosspoints: outl
= inl OR in3 and out? = inl OR inZ. Similarly,
configurable NOR planes can be assembled. Since
{OR, NOR} is a complete logic set, any digital

Apd(Vpd}
Gratgky Gnd

Fig. 2 Nanowire-based programmable diode OR array
[40]
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Fig. 3 An illustration of NanoPLA Architecture [41]

if sufficiently
interconnected OR and NOR planes are given.

In [41], DeHon et. al. have proposed a method to
build sublithographic PLLAs (Pro-grammable Logic
Arrays) using nanowires (NWs) and to interconnect
PLAs to form large arrays. In this architecture, the
PLAs are built upon programmable crosspoint diodes

logic circuits can be implemented,

and by using lithographic scale address decoder
that can be used to address individual nanowires.
Also, by using some semi-static structure and app-
lying a sequence of timing control signals, the PLAs
can perform buffer and inverter functions as well
as global clock control.

There is another nanowire crossbar architecture
called the NanoFabric. The NanoFabric architecture
has nanoscale crossbars and supporting microscale
components and facilitates directed nanoscale self-
assembly paradigm. There are a few key elements
in the architecture as follows: Nanoblock: The archi-
tecture of NanoFabric consists of array of inter-
connected nanoblocks and switch blocks. The logic
block in this architecture is similar to configurable
logic block in FPGA. Nanoblock is based on a mole-
cular logic array (MLA). There is a reconfigurable
switch at ‘each intersection of MLA in series with
diode. Diode-resistor logic is used to perform logical
operations. Both signals and their complemented
signals are produced to make a complete logic set.
Logic values are restored using molecular latches,

and Switchblock: A switch block is also recon—
figurable and serves to connect wire segments of
adjacent NanoBlocks. The configuration of the
switch block determines the direction of data flow
between the logic blocks.

3. Nanoscale Reconfigurable Crossbar Repair
Problem

Due to imperfections and variations in nanoscale
manufacturing, defect densities as high as 10% is
anticipated in nanowire crossbars. Nanowire crossbar
architectures share common characteristics - they
support nanoscale manufacturing paradigm via simple
homogeneous periodic structures and reconfigura-
bility for post-fabrication design mapping. Thus,
such defects should be located when tested and
avoided when the given design is mapped. In this
section, a general model for nanoscale crossbar
systems will be proposed and the defect avoidance
logic mapping problem will be formally defined
based on the proposed model.

The programmable diode crossbar structure (namely,
logic block) supports flexible utiliza-tion of its cross-
points through reconfiguration, even though the
defect rate is as high as 10%. The internal lines in
the logic blocks are completely interchangeable and
the switch block can provide the flexible connec—
tions between inputs and outputs signals of adjacent
logic blocks. It is possible to utilize such flexibility
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and reconfigurability to get around defective cross-
points. The term "repair’” used in this paper refers
to the defect-avoidant logic mapping procedure in
which defective crosspoints are located and avoided
when the given logic is programmed.

A few testing methods for crossbar architectures
have been reported in literature, including [5] and
{21]. The basic idea is to use an external tester to
test a certain area of the crossbar chip under test.
Then program that tested area to an internal tester
which can be used to test the rest of the given
DUT (Device Under Test). Except using the external
tester, all the rest testing can be therefore viewed
as BIST (Built-In Self Test). Also, this method
could be done in parallel so that better test speed
can be achieved.

Likely defects in nanowire crossbar systems are
also anticipated to be different from ones in CMOS
systems. Such nanowire crossbar specific defects
are often categorized as' 1) defects in programm-
able crosspoints, and 2) defects in nanowires [42].
Nanowires with short or break can be easily tested
out and all crosspoints fall into those nanowires
simply marked as unusable. Physically, defects in
programmable crosspoints are due to the structure
of the junctions, which are bistable molecules bet-
ween two layers of nanowires. Reprogrammability
of a crosspoint comes from the bistable property of
the molecules located in the crosspoint area. If
there are not enough molecules at a certain cross—
point then that junction may not be able to be
programmed to a “closed” state, or the ”closed”
state may have higher resistance than the threshold
from speculation which enable the whole system
operate properly. If the crosspoint cannot be pro-
grammed to "open” status which means the two
crossing nanowires are always connected, like a
short occurred in those two nanowires, we should
treat these as nanowire defects rather than junction
defects. Those crosspoints which cannot be progra-
mmed into a “closed” state, but can be programmed
into a "open” state are referred to as the non-
programmable crosspoints. Although the non-pro-
grammable crosspoints are defective, they do not
affect the other crosspoints
columns associated with them.

in the rows and
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Fig. 4 Nanoscale crossbar structure with defective
crosspoints

For example, in Fig. 4, nanowire w3 only has one
non-programmable crosspoint at the junction with
nanowire b. The junctions with nanowire a@, ¢, d
and e are still defect-free; therefore, programmable.
So, if we happen to have a function f = a + ¢ + d
+ ¢ needed to be mapped (i.e, note b is not used
in this function), nanowire w3 is still good to be
matched and the output will not be affected by the
non-programmable crosspoint. As clearly shown in
this example, defective crosspoints can be avoided
while the given logic functions are successfully
mapped if certain conditions are met.

To map the given physical design onto the re-
configurable crossbar system, the logic synthesizer
should generate a netlist which allocates some of
the nanowires as inputs, some as outputs and also
indicate which crosspoints need to be set to "closed”
state. In this work, M x M matrix F is used to
represent the set of functions that are needed to
program the given reconfigurable crossbar system.
In F, columns represent input terms and rows
represent OR functions based on the input terms. If
the node value is 1, this means the corresponding
crosspoint is needed to be programmed to "closed”
state and the crosspoint that should be programmed
to "closed” state is called "on-input”. If the node
value is 0, the crosspoint should be left as "open”
state. Because of the inherent reconfigurability of
the crossbar architecture, the order of rows and
columns can be rearranged if coupled switch blocks
are reconfigured, accordingly.

After testing, a defect map which indicates the
locations of the defective crosspoints can be con-
structed. Another N x N matrix D is to represent
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the defect map. Both F and D are assumed to be
symmetric for the simplicity in numerical analysis
in this paper. For the location which represents a
non-programmable crosspoint, 1 is allocated to
indicate the defect. Otherwise, 0 is allocated to
indicate the corresponding crosspoint location is
programmable. An OR function from F (i.e., one
row from F) can be assigned to a physical nano-
wire row if and only if each of the on-inputs of
the OR function has a corresponding non-defective
crosspoint on the physical nanowire.

Even though some nanowires have defective cross-
points, some OR functions may still be successfully
mapped to them, if on-inputs do not fall into
non-programmable crosspoints. The challenge is to
find a successful mapping while minimizing over-
head costs induced by the defect-avoidant logic
mapping procedure. In the following - section, three
simple defect-avoidant logic mapping algorithms
under consideration will be discussed.

4. Defect-Avoidant Logic Mapping Algorithms
Under Consideration

For the given nanowire crosshar repair problem,
row-wise (or column-wise) repair algo-rithm is
trivial, since the greedy algorithm always results in
the best solution. However, for the two-dimensional
repair problem which is similar to two-dimensional
memory repair problem, only the brute-force algorithm
can guarantee the optimal solution, simply because
it is an NP-complete problem [43-47]. So, faster
algorithms that can be used to find sub-optimal
solution at reasonable overhead are usually pursued.
For the given reconfigurable crossbar repair problem,
the following three repair algorithms are exten-
sively evaluated:

1) Row-wise matching algorithm (Algorithm #1): F
and D are sorted in descending order and as-
cending order of n. respectively. The idea is to
arrange OR functions in F in decreasing order
of n; and nanowire rows in D in increasing
order of ns Then, row-wise greedy matching is
performed. For each OR function in F is selected
from top to bottom. Then, sequential search on
nanowire rows in D is performed to find a suc—
cessful matching. This procedure is repeated until

\* Row-wise matching algorithm *\
Sort F' in descending order of n,; and D in ascend-
ing order of n.y
While F' is not empty
Select the first OR function from F
While (f; is not matched) and (W has non-visited)
Select the first unused row in D
If defect-avoiding matching is possible
Mark both as matched
Remove them from F and D
Else
10 Set the selected row visited
11 EndWhile
12 EndWhile

-

AC-2- R I~ SV R RV )

Fig. 5 Pseudo code for row-wise matching algorithm
(namely, Algorithm #1). Both F and D are
sorted and each OR function in F is mapped
onto D while avoiding defective crosspoints

all OR functions in F are successfully mapped
to nanowire rows while avoiding defective cross-
points that cannot be programmed to “closed”
state. A detailed pseudo code of this algorithm
is shown in Fig. 5.

2) Column-matching—first algorithm (Algorithm #2):
In this algorithm, the order of nanowire columns
are rearranged first so that the possibility of
successful mapping could be improved. The idea
is to arrange nanowire columns in D so that the
nanowire column with larger ny to the physical
column with smaller number of defects (e,
smaller ny). In this way, the possibility of suc-
cessful mapping will be increased significantly.
So, in this algorithm, nanowire columns are rear-
ranged and mapped to function input columns.
Then, the row-wise mapping algorithm. is invoked
to map individual OR functions. A detailed pseudo
code of this algorithm is shown in Fig. 6.

3) Redundant column-matching-first algorithm (Algo~
rithm #3): If M > N, there should be unused
nanowire columns can be used as redundancy.
The switching block allocated to arrange input
terms to the logic block can be rearranged to
assign an input term to more than one nanowire
columns. In that case, these unused columns can
be utilized as redundancy and more than one
nanowire columns can be configured to represent
the same input term. So, if more than one of
the crosspoint(s) that represent the same - input
term is programmable, then successful mapping
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\* Column-matching-first algorithm *\
While (¥ has unvisited column)
Find the column w/ max # of 1sin F
Find the column w/ min# of {sin D
Match two selected columns
Mark two selected columns as visited
EndWhile
Invoke row-wise greedy matching algorithm

N A R W B e

Fig. 6 Pseudo code for column-matching-first algo-
rithm (namely, Algorithm #2) . Columns of D
are rearranged to increase the chance of
successful matching in row-wise mapping

\* Redundant column-matching-first algorithm =\
White (¥ has unvisited column)
Find the column w/ max # of Isin F
Find the column w/ min # of Isin D
Match two selected columns
Mark two selected columns as visited
EndWhile )
Mark all columns in F as onvisited
While (D has unused column)
Find the column w/ max # of Isin F
10 Find the column w/ min # of Is in D
11 Match two selected columns
12 Mark two selected columns as visited
13 EndWhile
14 Invoke row-wise greedy matching algorithm

K-RE-- 0 B Y A e

Fig. 7 Pseudo code for redundant column-matching-
first algorithm (namely, Algorithm #3). Columns
with excessive defective crosspoints are simply
screened out first

is still possible. Thus, this redundancy utilization

may further increase the probability of success-

ful mapping. A detailed pseudo code of this

algorithm is shown in Fig. 7.

Parametric simulators of the described algorithms
have been implemented using MatLab. The follo-
wing notations will be used throughout this work:

*nyi. the number of ls in the iy row vector

from F or D,
*ng - the number of 1s in the i column vector
from F or D.

*ri: the ix row in matrix.

* ¢ the im column in matrix.

*M: the size of matrix F is M x M which is

also the size of the given function set.

* N the size of matrix D is N x N which is

also the size of the physical array.

* P;: the probability of the given crosspoint to

be functional.

« E;n: the possibility of having rowi from F has
a matching in D.

The following assumptions were used throughout

the simulation:

* A defect rate of 10% is used. When a N x N
matrix D is constructed, each crosspoint has
10% probability to be 1.

« A function usage rate, Pr is used to generate
the function matrix F; meaning that each cross-
point has P probability to be 1.

It is also assumed that N > M.

Two performance metrics for the nanowire crossbar
repair algorithms were proposed in [48] and are
defined as follows:

» Utilization: The number of utilized nanowires
in D which have been successfully mapped to
OR functions in F divided by the physical
array size N.

* Coverage: The number of OR functions which
have been successfully mapped to physical array
divided by the given function size M.

Considering the F and D are randomly generated
following the predetermined probabilities (e, FPr
and F;), the simulation result may show some
fluctuations. In order to capture steady-state results,
each simulation routine was iterated for 100 times
and the average values were collected for each data
point. Coverage and utilization plots with respect to
different values of N in X axis were reported in
[48}. As shown in these plots, algorithms #2 and #3
(i.e., 2D repair algorithms) have significant perform-
ance benefits over the algorithm #1 (ie, 1D repair
algorithm}. Thus, it can be concluded that both the
column rearrangement technique and the redundant
column utilization technique are effective in improving
the overall repair performance.

5. Cost-Driven Repair Optimization

5.1 Algorithm Execution Time Overhead

From the preliminary discussion in the previous
section, it is possible to observe the advantages
that 2D algorithms have over 1D in terms of Ufi-
lization and Coverage. However, 2D algorithms are
more computationally complex than the 1D one,
which means it is likely to spend more time to run
2D algorithms. The time overhead is a significant
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cost factor in manufacturing, so it should be con-
sidered as an overhead cost along with the other
repair overhead costs.

Firstly, let us analyze the Algorithm #1. As shown
in Fig. 5, the algorithm could be decomposed in two
segments. The first segment is the sorting process.
The second segment is the sequential matching
process. In order to sort the rows in the order of ny,
ny should be counted first. For the function matrix F,
we need O(M) steps to count n.. For a typical quick
sort algorithm, O(M x log M) steps are needed to
get the sorting done. To get the number of steps
needed to complete the matching process, the app—
roach described in [42] can be used. Suppose m; is
the number of iterations needed to find a matching of
the iy row from F in D. Probability of the matching
can be calculated which is denoted as En. So, we

have m; x P? = Em. Therefore, m; = E, x P;‘, which
is the average number of iterations that one row

need to find a matching. So, the total number of
steps on average is:

O(iiM (B 7% c')) ®

=1
Note equation (1) are adopted from the work by
[40]. Considering the D is also need to be sorted,
the number of overall steps for 1D algorithm need
include the D sorting part O(N x log N). Among
the O(M), O(N), O(M x log M), O(N x log N) and

equation (1), the dominant complexity of the algo-

rithm is therefore from equation (1).

Then let us consider Algorithm #2. As shown in
Fig. 6, the difference between this algorithm and 1D
algorithm exists in the column rearrangement pro-
cess. So, following the similar method, the complexity
of Algorithm #2 is also dominated by equation (1).

For Algorithm #3, an additional redundant column
rearrangement process is needed, so the dominant
part is expressed in equation (1).

Thus, in terms of time complexity, those three
algorithms are relatively similar. But in reality, the
running times of those algorithms are still quite
different. The software running time of each algo-
rithm was measured by MatLab tool and shown in
Fig. 8. The computing hardware used for this ana-
lysis has a Pentium IV 2.4Ghz processor and a

Elapsed time for each algorithm

80 90 108 116 120 130 WD 150
Physical aray size

Fig. 8 Elapsed execution time curves for three different
repair algorithms [48]

512MB RAM. Tn different industry/hadware environ-
ments, if we can correctly ‘select coefficient, the
actual running time captured by Matlab can reflect
the real time overhead of the implementations. A
method to estimate the time overhead coefficient
will be discussed later in this section.

5.2 Unused Area Overhead

In practice, after the completion of design, the
size of the OR function set M is determined. The
manufacturing process would define the real array
size N with a certain variation. It is possible to
have the array size N to be greater or equal to M.
Different array size N may cause different Utili-
zation and unused area overhead. So the first task
is to find the area overhead to implement the given
function set with a certain size M for different
physical array size N. In order to achieve 100%
Coverage, one or more logic blocks are needed to
map the given function set F, completely.

For example, if the physical array size is the
same as given function set size (ie, N = M = 50),
Coverage is around 32%. So, at least 4 logic blocks
are needed to fully implement F. If N is increased
to 150, Coverage is 100% so one 150 x 150 logic
block is enough to fully implement the given F.
The number of crosspoints used in these two cases
can be also calculated to be considered. The first
case is 50 x 50 x 4 = 10; 000 and the second case
is 150 x 150 x 1 =22; 500. There are M” crosspoints
are used by implementing the function set F, which
should be deducted from the total number of cross-
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points when calculating the wasted area. So, the
first design candidate, N=M =50, is better than
the second one in terms of area overhead since less
crosspoints are unused. The same method can be
used to find the area overhead for each N value,
so that the optimal physical array size can be
found. A mathematical model can be established to
calculate the lowest area overhead as possible.

First, the number of arrays needed for a certain
combination of M and N should be found. The
objective of this search is to find the average number
of arrays needed, which can be defined as: N, =
[ (Coverage)™ 1.

N; can be used as a starting point and can be
increased or decreased until 100% Coverage and
smallest N, are achieved simultaneously. The de-
tailed process is described as follows. We first try

265

to match F to N, physical arrays initially. If 100%
coverage is achieved then we decrease the N, by 1
otherwise we increase the N, by 1 until we obtain
100% coverage. In this way, we can get the N; as
the minimum number of logic blocks needed to fully
implement F. Another simulation results are shown
in Fig. 9, in which the minimum number of logic
blocks required to fully cover the given F for each
algorithm is shown as a function of N. Ny dec-
reases dramatically at the beginning and slowly
decreases as N is increased. Algorithm #3 has
much better performance than the other two.
Algorithm #2 is slightly better than Algorithm #1.

Then, we calculate the Utilization again after 100%
coverage achieved. Then, we can calculate the unused
area by the equation shown as Nyx N2-M 2

More simulation results are shown in Fig. 10.

Number of arrays needed to achieve 100% coverage

Number of arrays needed
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|
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Fig. 9 Number of logic arrays needed to implement the given function set F vs. physical array size N
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Fig. 10 The total number of unused crosspoints
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From the simulation results, the lowest area over—
head can be achieved at N = 60 by Algorithm #3
and N = 50 by the other two algorithms. Among
those three algorithms, Algorithm #3 has the best
performance in terms of the area overhead.

6. Programmability Comparison

Probability of successful mapping the given logic
function using the given partially de-fective nanowire
crossbar is referred to as the Programmability. If
the given crossbar has no defective crosspoint and
enough number of programmable crosspoints to
realize the given logic function, 100% programm-
ability will result. Programmability is mainly deter-
mined by two major factors ~ defect rate and per-
formance of the repair algorithm. Programmability
decreases as the defect rate increases, since more
number of crosspoints become unusable. Also, if
the given repair algorithm performs better, then the
probability of finding a successful circumvention of
defective crosspoints increases.

In order to evaluate three given repair algorithms
in terms of programmability, a series of parametric
simulations have been conducted. As a benchmark
suite of logic functions, we have selected logic
functions for threshold gates of Null Convention
Logic (NCL) [49). NCL is one of the emerging as-
ynchronous logic paradigms where delay-insensitive
computing is possible; therefore, considerably pro-
mising Wwhen applied to nanoscale reconfigurable
hardware since all timing-related failure modes can
‘be inherently addressed [50].

Null | Conventional Logic integrates data and
control into a single signal. The two states, DATA
and NULL are used for achieving local synchroni-
zation and handshaking-based I/O control. Primitive
logic gates in NCL are referred to as the threshold
(TH) gates with hysteresis. There are 27 TH gates
in NCL and they directly implement all Sum-of-
Product (SOP) logic functions with 4 or less vari-
ables. Each NCL TH gate has a threshold term for
logic operation a hysteresis term for state-holding
behavior. For example, TH23 gate can be expressed
in a Boolean expression of F=AB+BC+AC+(A
+ B+ C)F' where AB+BC+AC term is for the
threshold behavior (e, it describes conditions to

assert the output) and (A4 + B+ O)F' term is for the
hysteresis behavior (e, once asserted, the output
maintains the value of 1 until all input wires are
de-asserted).

Aforementioned repair algorithms have been tested
with various parameter sets to obtain parametric
simulation data. Each of the results describes the
variation of programmability of various TH gate
macros. Six representative TH gates with various
complexities, TH12 (Z=A+ B), TH24 (Z=AB+BC
+CD+AD +BD + CD), TH34(Z=ABC+ ABD + BCD
+ACD), TH34w2 (Z= AB+ BC+ AD + BCD), TH44w322
(Z=AD + BC), TH54w322 (Z=AB+ AC + BCD) have
been used in the simulations for testing their pro-
grammability at different defect rates on crossbar’s
with various dimensions.

Fig. 11 illustrates the variation of programma-
bility of the aforementioned six threshold gates
with crossbar's of various dimensions 10% defect
rate using Algorithm #1. Careful observation of this
figure suggests us that the gates with lesser number
of crosspoints, which depend on the number of
AND terms in their expression, have higher pro-
grammability as the redundancy increases {(eg., a
THI12 gate has high programmability compared to
the TH24). This method assures a profitable yield
while manufacturing simple circuits at low crossbar
defect rates. It will ensure lesser cost and faster map-
ping process rather than using the other complex

¢ N(m:o:mawwiq»qsm)::m-xnm:)m ’
Fig. 11 Programmability of various logic functions
at 10% defect rate using Algorithm #1
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Fig. 12 Programmability of various logic functions at
10% defect rate using Algorithm #2

techniques. We can also use this technique if manu-
facturers are able to manufacture crossbars with
lesser defect rate and also can tolerate the cost of
higher redundancy overhead.

Fig. 12 shows the variation of programmability
with change in crossbar dimensions at 10defect rate
using Algorithm #2. Results shown in this figure
infer that this process is better than the initially
shown Algorithm #1 based on the programmability
at similar defect densities. This can be used as an
immediate upgrade if the manufacturer is not
willing to tolerate high redundancy at similar defect
rates. This method can be considered as a com-
promise between the Algorithm #1 and #3 which
are at the two opposite extremes.

Fig. 13 illustrates the variation of programm-
ability with change in crossbar dimensions at 10%,
defect rate. Shown results indicate an improvement
in programmability when compared to two pre-
viously discussed algorithms. Algorithm #3 is con-
sidered to be an annexure for Algorithm #2 which
has a considerable increase in programmability at
similar defect rates. The probable difference bet-
ween the fwo approaches would be increase in time
complexity which accounts for increased progra-
mmability in case of the latter approach.

7. Overall Repair Cost Analysis

As shown in the previous section, considered
repair algorithms can achieve certain level of progra-

3

1 2 3 e
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Fig. 13 Programmability of various logic functions at
10% defect rate using Algorithm #3

mmability by circumventing defective crosspoints.
However, such repair performance comes with un-
wanted cost factors including repair time overhead
and area overhead. Therefore, it is desirable to
factor in both repair performance factors and repair
overhead factors in the same numerical cost opti-
mization model to find the optimal repair solution.
The selected optimal repair solution has full logic
mapping coverage {ie, 100% programmability) and
the minimum overhead costs. The similar cost opti-
mization approach proposed in [4851] can be fol-
lowed to balance the repair performance and the
overhead costs.

The cost of area overhead can be calculated as
follows: first, the normalized cost (e.g., in unit cost)
is estimated per one crossbar array, spent on the
fabrication process including the material cost,
machine usage cost, storage and transportation cost
for the material, labor cost, etc. For a mature
fabrication plant, this cost can be empirically mea-
sured and estimated by the planning department.
Secondly, the fabrication cost for a single crosshar
array is divided by the total number of crosspoints
in the logic blocks of the crossbar so that the unit
cost for each crosspoint can be calculated. Let us
denote as the coefficient for the unit area cost.
Finally, the overall unused area overhead cost can
be calculated by multiplying the unit cost for a
crosspoint by the number of wasted crosspoints.

Time overhead cost can be estimated as follows:
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first, the ratio on the practical imple~mentation time
over simulation time from our simulator is found.
This could be done if we have the operational
frequency of testers, the machine touch-down time,
the number of I/O pins on the interface device, etc.
Secondly, for the manufacturing process, we need
to find the cost of machine usage, power consum-
ption and so on per unit time. Let us denote as the
cost coefficient per unit manufacturing time multi-
plied by. Then we can multiply the simulation time
by to get the normalized cost of time overhead.

For each cost factor, as long as the ratios among
the cost parameters, and are the same, the final
cost curve will show the same result comparatively.
Now we can add up those cost factors to obtain
the overall repair cost (ie, Costwerar = @ *x (# of
unused crosspoints) + B x (repair algorithm running
time)) [48].

8. Parametric Repair Cost Comparison

Extensive parametric simulation has been con-
ducted to validate the proposed cost-driven repair
optimization model, in which a set of production
parameters, = 1 and = 500 were chosen arbitrarily
and used. Simulation results are shown in Fig. 14.

From the results, it can be observed that if we
choose Algorithm #3 and the physical logic block
size of 60 x 60, we will be able to achieve the
lowest overall cost, while successfully implementing
the given function set F. In order to simulate

_x10* Overall repair cost (M=50, Pt=T0%)
¥

T T T T T 4

[}
45 50 85 60 6 70 75 80 85 90 95 100 105 110113

Physical amay size
Fig. 14 Overall normalized repair costs of three
different algorithms for M = 50 and Pr = 70%

case

x 16" Overafl repair cost (M=50, Pf=50%)
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Bl A B B

Us 50 55 60 65 70 75 80 85 90 95 100 105 110113
Physical aray size

Fig. 15 Overall normalized repair costs for M = 50
and Py = 50% case

different production environments, different and values
can be assumed and a different result (i.e., the most
cost-effective repair solution) can be obtained.
Besides these cost coefficients, the property of
the given function set F affects the overall cost as
well. The simulation results shown in Fig. 14 are
based on a function set F with Py = 70%. How-
ever, some other physical designs may not need
such a high usage rate of the crosspoints. For
example, let us consider another design with Py =
50%. It is easier to find ‘a matching for an OR
function with lower usage rate, if the defect rate
remains the same. To get a comparative result,
another parametric simulation was conducted with
the same cost coefficients = 1 and = 500. Simula-
tion results are shown in Fig. 15 and it can be
concluded that the most cost-effective repair -solu—
tion can be achieved by Algorithm #3 when the
physical array size of 80 x 80 is used. For the
other two algorithms, the optimal physical array
size is 50 x 50. Compared with result in Fig. 14,
the cost for each algorithm drops dramatically (e,
approximately 509). Therefore, the function usage
rate Pr also plays as a significant factor in deter-
mining the overall cost. In addition to the cost
coefficients and function usage rate FP; let us
consider the impact of the function set size M on
the overall repair cost. Aforementioned simulation
results are based on M = 50. In different design
environments, the value of M could be different. M
= 70 and P; = 50% and the same cost parameters
=1 and = 500 have been used to conduct another



Nanowire Reconfigurable Crossbar 728 913 2% 8% 23 A48T ¥4e $43 F i8] o H335 I 269

2% 10° Overali repair cost (M=70, Pf=50%)

Y T T T T T T ¥ T

80 85 96 95 100 105 110 115 120 125 130133

Physical array size
Fig. 16 Overall normalized repair costs for M = 70
and Py = 50% case
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parametric simulation to compare. Results are shown
in Fig. 16 and Algorithm #1 and #3 have the
optimal physical array size at 75 x 75 but Algorithm
#2 has the optimal physical array size at 70 x 70.

Compared with the results shown in Fig. 15,
although the function usage rate P;s are the same
(i.e, 50%), the overall normalized cost shown in
Fig. 16 is much higher. So, it can be observed that
the function set size M also plays a very important
role.

9. Conclusion

Recent trend and issues in nanowire reconfigur-
able crossbar architectures based on bottom-up
assembly paradigm are discussed. For the emerging
nanoscale crossbar-based systems, higher defect
densities are anticipated due to nondeterministic
nature of nanoscale bottom-up assembly paradigm.
This indicates that effective and efficient testing
and logic mapping methods are needed to locate
and tolerate such defects. Considering the defects in
nanoscale wires can be easily screened out by test-
ing, effectively avoiding the defective crosspoints in
cost-effective manner is important. Thus, three dif-
ferent repair algorithms have been evaluated to
tolerate the non-programmable crosspoints in this
work. From the simulation results, 2D algorithms
show significantly better performance over 1D algo-
rithm in terms of Utilization, Coverage and Pro-
grammability, but the performance benefits come
with higher repair overhead costs. The area and

time cost factors are identified as major overhead
in logic mapping-based repair. Thus, such cost
factors were parameterized and have been consi-
dered to evaluate the overall repair cost of each repair
algorithm. Extensive parametric simulation results
are shown to compare three nanowire crossbar
repair algorithms and a novel method to find the
optimal repair solution has been also demonstrated.
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