• Title/Summary/Keyword: Parametric excitation

Search Result 145, Processing Time 0.024 seconds

Continuous force excited bridge dynamic test and structural flexibility identification theory

  • Zhou, Liming;Zhang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.391-405
    • /
    • 2019
  • Compared to the ambient vibration test mainly identifying the structural modal parameters, such as frequency, damping and mode shapes, the impact testing, which benefits from measuring both impacting forces and structural responses, has the merit to identify not only the structural modal parameters but also more detailed structural parameters, in particular flexibility. However, in traditional impact tests, an impacting hammer or artificial excitation device is employed, which restricts the efficiency of tests on various bridge structures. To resolve this problem, we propose a new method whereby a moving vehicle is taken as a continuous exciter and develop a corresponding flexibility identification theory, in which the continuous wheel forces induced by the moving vehicle is considered as structural input and the acceleration response of the bridge as the output, thus a structural flexibility matrix can be identified and then structural deflections of the bridge under arbitrary static loads can be predicted. The proposed method is more convenient, time-saving and cost-effective compared with traditional impact tests. However, because the proposed test produces a spatially continuous force while classical impact forces are spatially discrete, a new flexibility identification theory is required, and a novel structural identification method involving with equivalent load distribution, the enhanced Frequency Response Function (eFRFs) construction and modal scaling factor identification is proposed to make use of the continuous excitation force to identify the basic modal parameters as well as the structural flexibility. Laboratory and numerical examples are given, which validate the effectiveness of the proposed method. Furthermore, parametric analysis including road roughness, vehicle speed, vehicle weight, vehicle's stiffness and damping are conducted and the results obtained demonstrate that the developed method has strong robustness except that the relative error increases with the increase of measurement noise.

Wave Propagation Characteristics in Saturated Porous Media II. Parametric Studies (포화된 다공성매체에서 파동의 전파특성 II. 파라미터 연구)

  • Kim, Sun-Hoon;Kim, Kwang-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.191-206
    • /
    • 2007
  • The general theoretical solutions for the wavespeed and damping derived in Part 1 of this work, are incorporated into the computer code. In this paper the code is used in a parametric study of the influence of excitation frequency and variations in material properties on propagation velocity and damping. Compressional wave velocity for waves of the first kind is shown to vary as a function of the frequency-permeability product, with a zone where wavespeed transitions from a lower bound value to a higher bound value with increasing values of the product. Damping is seen to be a maximum where the rate of change in wavespeed is greatest. Waves of the second kind also show a transition in wavespeed from near zero at low values of the frequency-permeability product to an upper bound value at higher values of the product.

Parametric optimization of an inerter-based vibration absorber for wind-induced vibration mitigation of a tall building

  • Wang, Qinhua;Qiao, Haoshuai;Li, Wenji;You, Yugen;Fan, Zhun;Tiwari, Nayandeep
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.241-253
    • /
    • 2020
  • The inerter-based vibration absorber (IVA) is an enhanced variation of Tuned Mass Damper (TMD). The parametric optimization of absorbers in the previous research mainly considered only two decision variables, namely frequency ratio and damping ratio, and aimed to minimize peak displacement and acceleration individually under the excitation of the across-wind load. This paper extends these efforts by minimizing two conflicting objectives simultaneously, i.e., the extreme displacement and acceleration at the top floor, under the constraint of the physical mass. Six decision variables are optimized by adopting a constrained multi-objective evolutionary algorithm (CMOEA), i.e., NSGA-II, under fluctuating across- and along-wind loads, respectively. After obtaining a set of optimal individuals, a decision-making approach is employed to select one solution which corresponds to a Tuned Mass Damper Inerter/Tuned Inerter Damper (TMDI/TID). The optimization procedure is applied to parametric optimization of TMDI/TID installed in a 340-meter-high building under wind loads. The case study indicates that the optimally-designed TID outperforms TMDI and TMD in terms of wind-induced vibration mitigation under different wind directions, and the better results are obtained by the CMOEA than those optimized by other formulae. The optimal TID is proven to be robust against variations in the mass and damping of the host structure, and mitigation effects on acceleration responses are observed to be better than displacement control under different wind directions.

Adaptive Voltage Control of a Single Machine Infinite Bus(SMIB) Power System with Governor Control for Reduced Oscillation of the Frequency (1기 무한모선 전력계통의 적응 전압 제어와 거버너를 이용한 주파수 진동의 억제)

  • Kim, Seok-Kyoon;Yoon, Tae-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.51-52
    • /
    • 2008
  • In this paper, we propose two control schemes. The first control scheme is an adaptive passivity-based excitation control which regulates the terminal voltage to its reference. This controller is obtained through two steps: firstly, a simple direct adaptive passivation controller is designed for the power system with parametric uncertainties; then a linear PI controller is applied to converge the terminal voltage to its reference. The second control scheme is a linear governor control which consists of the frequency and the mechanical power. It is shown that the internal dynamics are locally stable with controllable damping. In the end, the boundness of all electrical variables, the frequency, the mechanical power, and the convergence of the terminal voltage to its reference can be achieved by these control schemes.

  • PDF

Force-To-Rebalance Mode of a Resonator Gyro and Angular Rate Measurement Tests (공진 자이로의 재평형 모드 구현과 각속도 측정 실험)

  • Jin, Jaehyun;Kim, Dongguk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.563-569
    • /
    • 2014
  • This article focuses on a hemispherical resonator gyro driven by the Coriolis effect. A hemispherical shell, called a resonator, is maintained in the resonance state by amplitude control and phase locking control. Parametric excitation has been used to control the amplitude. For rate measurement mode or FTR mode, nodal points have been kept to an amplitude of zero. Angular rate measurement has been demonstrated by rotating a resonator. Frequency mismatch between two stiffness principal axes is a major cause of low performance: vibrating pattern drift and reduced control effectiveness. This mismatch has been reduced significantly by the addition of small mass. A negative spring effect, which lowers resonance frequencies, has been verified experimentally.

Impact of the masonry infills on the correlation between seismic intensity measures and damage of R/C buildings

  • Kostinakis, Konstantinos G.
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.55-71
    • /
    • 2018
  • This paper investigates the role of the masonry infills on the correlation between widely used earthquake Intensity Measures (IMs) and the damage state of 3D R/C buildings taking into account the orientation of the seismic input. For the purposes of the investigation an extensive parametric study is conducted using 60 R/C buildings with different heights, structural systems and masonry infills' distributions. The results reveal that the correlation between the IMs and the seismic damage can be strongly affected by the masonry infills' distribution, depending on the special characteristics of the structural system, the number of stories and the incident angle.

An Experimental Study on the Galloping of Inclined Cables

  • Kim, Han-Soo;Lee, Do-Hyung;Kim, Seok-Jung
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.137-144
    • /
    • 2002
  • A series of wind tunnel tests was conducted to investigate the existence of the galloping instability of inclined dry cables and also to Identify the influence of some parameters on it. These parameters are the structural damping and cable surface roughness, which may have significant impact on the vibration characteristics. The test results showed both the divergent type of galloping instability and the limited amplitude high wind speed vortex shedding excitation. Galloping instability was observed in only one case. Parametric study shows that the vortex shedding oscillation can be easily suppressed with an increase of structural damping. It was also shown that the instability criterion indicated by earlier research was too conservative compared to the results obtained from the present study.

  • PDF

Implementation of MPEG-4 HVXC decoder with VHDL (VHOL을 이용한 MPEG-4 HVXC 복호화기 구현)

  • 김구용;임강희;차형태
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.465-468
    • /
    • 2001
  • MPEG-4 Parametric Coding 중 저 비트율로 음성신호를 부호화하는 HVXC(Harmonic Vector excitation Ending)의 복호화 모듈인 LSP 합성필터와 무성음 합성부, 유성음 합성부를 VHDL을 이용하여 구현하였다. MPEG-4 HVXC의 복호화 과정은 코드북을 이용하여 LSP 계수, VXC signal, 그리고 Spectral Envelop이 복호화 되어 각각 LSP 역필터, 무성음과 유성음 합성단을 통과하여 LPC계수와 유,무성음 여기신호로 변환된 후 LPC 합성필터링 과정을 거쳐 최종적으로 음성신호를 출력시킨다. LSP inverse filter에서 사용되는 cosine함수값을 위하여 Table based Approximation을 이용하여 적은 양의 Table 값을 사용하여 정확하고 고속의 cosine 연산을 수행하였다. VXC 복호화 과정에서는 신호의 중복성을 제거하는 Hidden Address in LSH 방법을 사용하여 코드북의 크기를 줄였다. 유성음 합성단에서는 IFFT 모듈을 이용하여 연산속도를 증가 시켰다. 최종적으로 위와 같이 구현된 시스템을 Simulation을 통해 Software 검증을 하였다.

  • PDF

Infinite determinant method for stability analysis of parametrically excited systems (매개변수 가진 시스템의 안정서 해석을 위한 무한행렬법)

  • Hyun, Sang-Hak;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.916-923
    • /
    • 1998
  • In this paper, an infinite determinant method is presenstd for stability analysis of parametrically excited systems. Unstable regions of the combination parametric resonance as well as principal resonance can be identified with the method. A numerical problem of relatively large amplitude of excitation is solved, and the results of the presented method are compared to those of the multiple scales perturbation method. It is found that the presented method obtains more accurate transition curves which divide stable and unstables in the parameter plane than those of the multiple scales perturbation method.

Behavior of Steel Fiber Reinforced Concrete Columns under Cyclic Loading

  • Chang Kug-Kwan;Lee Hyun-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.415-423
    • /
    • 2004
  • To improve the brittle column behavior during seismic excitation, benefits of using steel fiber reinforced concrete in columns were investigated. For experimental study, eight specimens were used to evaluate the shear enhancement effect. The variables in this study were amount of shear reinforcement ratio (i.e., 0.26, 0.21 $\%$) and steel fiber volume fraction (i.e., 0.0, 1.0, 1.5, 2.0$\%$). The test results indicated that the maximum enhancement of shear capacity was shown in $1.5\%$ steel fiber content. In addition, to predict the maximum shear strength, equations of ACI 318-99, AIJ MB, NZS 3101, Hirosawa and Priestley were reviewed. From the parametric and regression study, modified Priestely equation was proposed by adding steel fiber effect.