• Title/Summary/Keyword: Parametric error

Search Result 270, Processing Time 0.031 seconds

The Bayesian Inference for Software Reliability Models Based on NHPP (NHPP에 기초한 소프트웨어 신뢰도 모형에 대한 베이지안 추론에 관한 연구)

  • Lee, Sang-Sik;Kim, Hui-Cheol;Song, Yeong-Jae
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.389-398
    • /
    • 2002
  • Software reliability growth models are used in testing stages of software development to model the error content and time intervals between software failures. This paper presents a stochastic model for the software failure phenomenon based on a nonhomogeneous Poisson process(NHPP) and performs Bayesian inference using prior information. The failure process is analyzed to develop a suitable mean value function for the NHPP ; expressions are given for several performance measure. Actual software failure data are compared with several model on the constant reflecting the quality of testing. The performance measures and parametric inferences of the suggested models using Rayleigh distribution and Laplace distribution are discussed. The results of the suggested models are applied to real software failure data and compared with Goel model. Tools of parameter point inference and 95% credible intereval was used method of Gibbs sampling. In this paper, model selection using the sum of the squared errors was employed. The numerical example by NTDS data was illustrated.

Trends in statistical methods in articles published in Archives of Plastic Surgery between 2012 and 2017

  • Han, Kyunghwa;Jung, Inkyung
    • Archives of Plastic Surgery
    • /
    • v.45 no.3
    • /
    • pp.207-213
    • /
    • 2018
  • This review article presents an assessment of trends in statistical methods and an evaluation of their appropriateness in articles published in the Archives of Plastic Surgery (APS) from 2012 to 2017. We reviewed 388 original articles published in APS between 2012 and 2017. We categorized the articles that used statistical methods according to the type of statistical method, the number of statistical methods, and the type of statistical software used. We checked whether there were errors in the description of statistical methods and results. A total of 230 articles (59.3%) published in APS between 2012 and 2017 used one or more statistical method. Within these articles, there were 261 applications of statistical methods with continuous or ordinal outcomes, and 139 applications of statistical methods with categorical outcome. The Pearson chi-square test (17.4%) and the Mann-Whitney U test (14.4%) were the most frequently used methods. Errors in describing statistical methods and results were found in 133 of the 230 articles (57.8%). Inadequate description of P-values was the most common error (39.1%). Among the 230 articles that used statistical methods, 71.7% provided details about the statistical software programs used for the analyses. SPSS was predominantly used in the articles that presented statistical analyses. We found that the use of statistical methods in APS has increased over the last 6 years. It seems that researchers have been paying more attention to the proper use of statistics in recent years. It is expected that these positive trends will continue in APS.

Development of MKDE-ebd for Estimation of Multivariate Probabilistic Distribution Functions (다변량 확률분포함수의 추정을 위한 MKDE-ebd 개발)

  • Kang, Young-Jin;Noh, Yoojeong;Lim, O-Kaung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.55-63
    • /
    • 2019
  • In engineering problems, many random variables have correlation, and the correlation of input random variables has a great influence on reliability analysis results of the mechanical systems. However, correlated variables are often treated as independent variables or modeled by specific parametric joint distributions due to difficulty in modeling joint distributions. Especially, when there are insufficient correlated data, it becomes more difficult to correctly model the joint distribution. In this study, multivariate kernel density estimation with bounded data is proposed to estimate various types of joint distributions with highly nonlinearity. Since it combines given data with bounded data, which are generated from confidence intervals of uniform distribution parameters for given data, it is less sensitive to data quality and number of data. Thus, it yields conservative statistical modeling and reliability analysis results, and its performance is verified through statistical simulation and engineering examples.

Continuous force excited bridge dynamic test and structural flexibility identification theory

  • Zhou, Liming;Zhang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.391-405
    • /
    • 2019
  • Compared to the ambient vibration test mainly identifying the structural modal parameters, such as frequency, damping and mode shapes, the impact testing, which benefits from measuring both impacting forces and structural responses, has the merit to identify not only the structural modal parameters but also more detailed structural parameters, in particular flexibility. However, in traditional impact tests, an impacting hammer or artificial excitation device is employed, which restricts the efficiency of tests on various bridge structures. To resolve this problem, we propose a new method whereby a moving vehicle is taken as a continuous exciter and develop a corresponding flexibility identification theory, in which the continuous wheel forces induced by the moving vehicle is considered as structural input and the acceleration response of the bridge as the output, thus a structural flexibility matrix can be identified and then structural deflections of the bridge under arbitrary static loads can be predicted. The proposed method is more convenient, time-saving and cost-effective compared with traditional impact tests. However, because the proposed test produces a spatially continuous force while classical impact forces are spatially discrete, a new flexibility identification theory is required, and a novel structural identification method involving with equivalent load distribution, the enhanced Frequency Response Function (eFRFs) construction and modal scaling factor identification is proposed to make use of the continuous excitation force to identify the basic modal parameters as well as the structural flexibility. Laboratory and numerical examples are given, which validate the effectiveness of the proposed method. Furthermore, parametric analysis including road roughness, vehicle speed, vehicle weight, vehicle's stiffness and damping are conducted and the results obtained demonstrate that the developed method has strong robustness except that the relative error increases with the increase of measurement noise.

Collapse resistance of steel frames in two-side-column-removal scenario: Analytical method and design approach

  • Zhang, JingZhou;Yam, Michael C.H.;Soltanieh, Ghazaleh;Feng, Ran
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.485-496
    • /
    • 2021
  • So far analytical methods on collapse assessment of three-dimensional (3-D) steel frames have mainly focused on a single-column-removal scenario. However, the collapse of the Federal Building in the US due to car bomb explosion indicated that the loss of multiple columns may occur in the real structures, wherein the structures are more vulnerable to collapse. Meanwhile, the General Services Administration (GSA) in the US suggested that the removal of side columns of the structure has a great possibility to cause collapse. Therefore, this paper analytically deals with the robustness of 3-D steel frames in a two-side-column-removal (TSCR) scenario. Analytical method is first proposed to determine the collapse resistance of the frame during this column-removal procedure. The reliability of the analytical method is verified by the finite element results. Moreover, a design-based methodology is proposed to quickly assess the robustness of the frame due to a TSCR scenario. It is found the analytical method can reasonably predict the resistance-displacement relationship of the frame in the TSCR scenario, with an error generally less than 10%. The parametric numerical analyses suggest that the slab thickness mainly affects the plastic bearing capacity of the frame. The rebar diameter mainly affects the capacity of the frame at large displacement. However, the steel beam section height affects both the plastic and ultimate bearing capacity of the frame. A case study on a six-storey steel frame shows that the design-based methodology provides a conservative prediction on the robustness of the frame.

Use of a Bootstrap Method for Estimating Basic Wood Density for Pinus densiflora in Korea (부트스트랩을 이용한 소나무의 목재기본밀도 추정 및 평가)

  • Pyo, Jung Kee;Son, Yeong Mo;Kim, Yeong Hwan;Kim, Rae Hyun;Lee, Kyeong Hak;Lee, Young Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.392-396
    • /
    • 2011
  • The purpose of this study was to develop the basic wood density (Abbreviated BWD) for Pinus densiflora and to evaluate the applicability of bootstrap simulation method. The data sets were divided into two groups based on eco-types in Korea, one from Gangwon type and the other from Jungbu type. The estimated BWDs derived from bootstrap simulation, which is one of the non-parametric statistics, were 0.418 ($g/cm^3$) in the Pinus densiflora in Gangwon while 0.464 ($g/cm^3$) in the Pinus densiflora in Jungbu. To evaluate the bootstrap simulation, the mean BWD, standard error and 95% confidence interval of probability density were estimated. The number of replication were 100, 500, 1,000, and 5,000 times that showed constant 95% confidence interval, while tended to decrease in terms of standard errors. The results of this study could be very useful to apply basic wood density values to calculate reliable carbon stocks for Pinus densiflora in Korea.

Application of Minimum Commitment Method for Predicting Long-Term Creep Life of Type 316LN Stainless Steel (Type 316LN 스테인리스강의 장시간 크리프 수명 예측을 위한 최소구속법의 적용)

  • Kim, Woo-Gon;Yin, Song-Nan;Ryu, Woo-Seog;Lee, Chan-Bock
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.118-124
    • /
    • 2008
  • Abstract: A minimum commitment method(MCM) was applied to predict the long-term creep rupture life for type 316LN stainless steel(SS). Lots of the creep-rupture data for the type 316LN SS were collected through world-wide literature surveys and the experimental data of KAERI. Using these data, the long-term creep rupture life above ${10}^5$ hour was predicted by means of the MCM. In order to obtain the most appropriate value for the constant A being used in the MCM equation, trial and error method was used for the wide ranges from -0.12 to 0.12, and the best value was determined by using the coefficient of determination, $R^2$ which is a statistical parameter. A suitable value for the A in type 316LN stainless steel was found to be at -0.02 ~ -0.05 ranges. It is considered that the MCM will be superior in creep-life prediction to commonly-used timetemperature parametric method, because the P(T) and G($\sigma$) functions are determined from the regression method based on experimental data.

Unified calculation model for the longitudinal fundamental frequency of continuous rigid frame bridge

  • Zhou, Yongjun;Zhao, Yu;Liu, Jiang;Jing, Yuan
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.343-354
    • /
    • 2021
  • The frequencies formulas of the bridge are of great importance in the design process since these formulas provide insight dynamic characteristics of the structure, which guides the designers to parametric analyses and the layout of the bridge in conceptual or preliminary design. Continuous rigid frame bridge is popular in the mountainous area. Mostly, this type of bridge was simplified either as a girder or cantilever when calculating the frequency, however, studies showed that the different configuration of the bridge made the problem more complex, and there is no unified fundamental calculation pattern for this kind of bridge. In this study, an empirical frequency equation is proposed as a function of pier's height, stiffness of pier and the weight of the structure. A unified fundamental frequency formula is presented based on the energy principle, then the typical continuous rigid frame bridge is investigated by finite element method (FEM) to study the dynamic characteristics of the structure, and then several key parameters are investigated on the effect of structural frequency. These parameters include the number, position and stiffness of the tie beam. Nonlinear regression analyses are conducted with a comprehensive statistical study from plenty of engineering structures. Finally, the proposed frequency equation is validated by field test results. The results show that the fundamental frequency of the continuous rigid frame bridge increases more than 15% when the tie beams are set, and it increases with the stiffness ratio of tie beam to pier. The results also show that the presented unified fundamental frequency has an error of 4.6% compared with the measured results. The investigation can predicate the approximate longitudinal fundamental frequency of continuous ridged frame bridge, which can provide reference for the seismic response and dynamic impact factor design of the pier.

A study on the correlation of the structural integrity's reduction factors using parametric analysis (매개변수 해석을 이용한 구조물 건전도 저감 영향인자 상관성 연구)

  • La, You-Sung;Park, Min-Soo;Koh, Sungyil;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.485-502
    • /
    • 2021
  • In order to evaluate the impact of ground subsidence and superstructures that are inevitably caused by tunnel excavation, a total of seven major influencing factors of surface subsidence and structural soundness reduction were set, and a Parameter Study using numerical analysis was conducted. Stability analysis was performed using scheme of Boscardin and Cording method and the maximum subsidence amount and the angular displacement, and correlation analysis was performed for each major influencing factor. In addition, it was applied that used the mutual behavior of the ground and the structure by parameter analysis in the site of the 𐩒𐩒𐩒 tunnel located in Hwaseong-si, Gyeonggi-do, and the applicability of the site was analyzed. As a result, the error was found to be 1.0%, and it could be used as a basic material for determining the appropriate tunnel route under various conditions when evaluating the stability of the structure according to tunnel excavating at the design stage.

3D Digital Design Optimization Process Considering Constructability of Freeform Structure (비정형 구조물의 시공성을 고려한 3차원 디지털 설계 최적화 프로세스)

  • Ryu, Han-Guk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.5
    • /
    • pp.35-43
    • /
    • 2013
  • Nowadays the widely used media in architecture include visualizations, animations and three-dimensional models. 3D digital methods using active CAM(Computer Aided Manufacturing) and CNC(Computerized Numerical Control) imaging have been developed for accurate shape and 3D measurements in freeform buildings. In contrast to a conventional building using auto CAD system and others, the proposed digital optimization method is based on a combination of 3D numerical data and parametric 3D model for design and construction. The objective of this paper is therefore to present digital optimization process for constructability of freeform building. The method can be useful in the effective implementation of an error-proofing process of freeform building during design and construction phase. 3D digital coordinate data can be used effectively to identify correct size of structural and finish members and installation location of each members in construction field. In addition, architects, engineers and contractors can evaluate design, materials, constructability and identify error-proofing opportunities. Other project participants can also include representatives from all levels of management, departments as well as workers and key subcontractors' personnel, if necessary. The 3D digital optimization process is therefore appropriate to serious variations in freeform shape. For future study, the developed digital optimization method is necessary to be carried out to verify the robustness and accuracy for constructability in construction field.