Application of Minimum Commitment Method for Predicting Long-Term Creep Life of Type 316LN Stainless Steel

Type 316LN 스테인리스강의 장시간 크리프 수명 예측을 위한 최소구속법의 적용

  • Kim, Woo-Gon (Korea Atomic Energy Research Institute (KAERI), Nuclear Material Technology Development Division) ;
  • Yin, Song-Nan (Korea Atomic Energy Research Institute (KAERI), Nuclear Material Technology Development Division) ;
  • Ryu, Woo-Seog (Korea Atomic Energy Research Institute (KAERI), Nuclear Material Technology Development Division) ;
  • Lee, Chan-Bock (Korea Atomic Energy Research Institute (KAERI), Nuclear Material Technology Development Division)
  • 김우곤 (한국원자력연구원 원자력 재료 연구부) ;
  • 윤송남 (한국원자력연구원 원자력 재료 연구부) ;
  • 류우석 (한국원자력연구원 원자력 재료 연구부) ;
  • 이찬복 (한국원자력연구원 원자력 재료 연구부)
  • Received : 2007.09.01
  • Published : 2008.03.22

Abstract

Abstract: A minimum commitment method(MCM) was applied to predict the long-term creep rupture life for type 316LN stainless steel(SS). Lots of the creep-rupture data for the type 316LN SS were collected through world-wide literature surveys and the experimental data of KAERI. Using these data, the long-term creep rupture life above ${10}^5$ hour was predicted by means of the MCM. In order to obtain the most appropriate value for the constant A being used in the MCM equation, trial and error method was used for the wide ranges from -0.12 to 0.12, and the best value was determined by using the coefficient of determination, $R^2$ which is a statistical parameter. A suitable value for the A in type 316LN stainless steel was found to be at -0.02 ~ -0.05 ranges. It is considered that the MCM will be superior in creep-life prediction to commonly-used timetemperature parametric method, because the P(T) and G($\sigma$) functions are determined from the regression method based on experimental data.

Keywords

Acknowledgement

Supported by : 과학기술부

References

  1. D. W. Kim, Y. K. Lee, W. G. Kim, and W. S. Ryu, J. Kor. Inst. Met. & Mater. 39, 1241 (2001)
  2. Y. S. Lee, D. W. Kim, D. Y. Lee, andW. S. Ryu, Met. Mater. Int. 7, 107 (2001) https://doi.org/10.1007/BF03026948
  3. W. G. Kim, S. H. Kim, and W. S. Ryu, KSME Int. J. 16, 420 (2002)
  4. W. G. Kim, S. H. Kim, and W. S. Ryu, KSME Int. J. 15, 1463 (2001) https://doi.org/10.1007/BF03185735
  5. I. Le May, Transactions of the ASME 101, 326 (1979) https://doi.org/10.1115/1.3450968
  6. S. S. Manson, and C. R. Ensign, Characterization of Materials for Service at Elevated Temperature Temperatures, MPC-7 ASME, New York, p.299-398 (1978)
  7. W. G. Kim, S. N. Yin, W. S. Ryu, Key Engineering Materials 297-300, 2272 (2005) https://doi.org/10.4028/www.scientific.net/KEM.297-300.2272
  8. W. G. Kim, S. N. Yin, and W. S. Ryu, W. Yi, Transactions of the KSME A 29,74 (2004)
  9. G. E. Diter, Mechanical Metallurgy, McGraw Hill Book Co., New York, p. 464-465 (1988)
  10. W. E. White, and I. Le May, J. of Eng. Mater. Tech. 100, 333 (1978) https://doi.org/10.1115/1.3443498
  11. S. S. Manson, and C. R. Ensign, NASA TM X-52999, p 1-14 (1971)
  12. NRIM Data Sheet, Data Sheets on the Elevated Temperature Properties of Hot Rolled Stainless Steel Plate (SUS 316-HP)-18Cr-12Ni-Mo-middle N-low C, No. 45, p. 1-12 (1997)
  13. K. Kazuya, D. Shingo, T. Kenichi, S. Masayuki, K. Nobuchika, and T. Yoshihiko, ASME PVP 391, 47 (1999)
  14. M. Liska, V. Vodarek, M. Sobotkova, and J. Sobotka, HNS 90, 78 (1990)
  15. M. D. Mathew, G. Sasikala, K. B. S. Rao, and S. L. Mannan, Mater. Sci. Eng. A 148, 253 (1991) https://doi.org/10.1016/0921-5093(91)90827-A
  16. O. K Lim, T. K. Hwang, and E. H. Choi, Transactions of the KSME A 29, 45 (2005) https://doi.org/10.3795/KSME-A.2005.29.1.045