• Title/Summary/Keyword: Parameters design optimization

Search Result 1,575, Processing Time 0.028 seconds

Modified complex mode superposition design response spectrum method and parameters optimization for linear seismic base-isolation structures

  • Huang, Dong-Mei;Ren, Wei-Xin;Mao, Yun
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.341-363
    • /
    • 2013
  • Earthquake response calculation, parametric analysis and seismic parameter optimization of base-isolated structures are some critical issues for seismic design of base-isolated structures. To calculate the earthquake responses for such non-symmetric and non-classical damping linear systems and to implement the earthquake resistant design codes, a modified complex mode superposition design response spectrum method is put forward. Furthermore, to do parameter optimization for base-isolation structures, a graphical approach is proposed by analyzing the relationship between the base shear ratio of a seismic base-isolation floor to non-seismic base-isolation one and frequency ratio-damping ratio, as well as the relationship between the seismic base-isolation floor displacement and frequency ratio-damping ratio. In addition, the influences of mode number and site classification on the seismic base-isolation structure and corresponding optimum parameters are investigated. It is demonstrated that the modified complex mode superposition design response spectrum method is more precise and more convenient to engineering applications for utilizing the damping reduction factors and the design response spectrum, and the proposed graphical approach for parameter optimization of seismic base-isolation structures is compendious and feasible.

Computational Lagrangian Multiplier Method by using for optimization and sensitivity analysis of rectangular reinforced concrete beams

  • Shariat, Mehran;Shariati, Mahdi;Madadi, Amirhossein;Wakil, Karzan
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.243-256
    • /
    • 2018
  • This study conducts an optimization and sensitivity analysis on rectangular reinforced concrete (RC) beam using Lagrangian Multiplier Method (LMM) as programming optimization computer soft ware. The analysis is conducted to obtain the minimum design cost for both singly and doubly RC beams according to the specifications of three regulations of American concrete institute (ACI), British regulation (BS), and Iranian concrete regulation (ICS). Moreover, a sensitivity analysis on cost is performed with respect to the effective parameters such as length, width, and depth of beam, and area of reinforcement. Accordingly, various curves are developed to be feasibly utilized in design of RC beams. Numerical examples are also represented to better illustrate the design steps. The results indicate that instead of complex optimization relationships, the LMM can be used to minimize the cost of singly and doubly reinforced beams with different boundary conditions. The results of the sensitivity analysis on LMM indicate that each regulation can provide the most optimal values at specific situations. Therefore, using the graphs proposed for different design conditions can effectively help the designer (without necessity of primary optimization knowledge) choose the best regulation and values of design parameters.

Frequency optimization for laminated composite plates using extended layerwise approach

  • Topal, Umut
    • Steel and Composite Structures
    • /
    • v.12 no.6
    • /
    • pp.541-548
    • /
    • 2012
  • This paper deals with the applicability of extended layerwise optimization method (ELOM) for frequency optimization of laminated composite plates. The design objective is the maximization of the fundamental frequency of the laminated plates. The fibre orientations in the layers are considered as design variables. The first order shear deformation theory (FSDT) is used for the finite element solution of the laminates. Finally, the numerical analysis is carried out to show the applicability of extended layerwise optimization algorithm of laminated plates for different parameters such as plate aspect ratios and boundary conditions.

Sealing design optimization of nuclear pressure relief valves based on the polynomial chaos expansion surrogate model

  • Chaoyong Zong;Maolin Shi;Qingye Li;Tianhang Xue;Xueguan Song;Xiaofeng Li;Dianjing Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1382-1399
    • /
    • 2023
  • Pressure relief valve (PRV) is one of the important control valves used in nuclear power plants, and its sealing performance is crucial to ensure the safety and function of the entire pressure system. For the sealing performance improving purpose, an explicit function that accounts for all design parameters and can accurately describe the relationship between the multi-design parameters and the seal performance is essential, which is also the challenge of the valve seal design and/or optimization work. On this basis, a surrogate model-based design optimization is carried out in this paper. To obtain the basic data required by the surrogate model, both the Finite Element Model (FEM) and the Computational Fluid Dynamics (CFD) based numerical models were successively established, and thereby both the contact stresses of valve static sealing and dynamic impact (between valve disk and nozzle) could be predicted. With these basic data, the polynomial chaos expansion (PCE) surrogate model which can not only be used for inputs-outputs relationship construction, but also produce the sensitivity of different design parameters were developed. Based on the PCE surrogate model, a new design scheme was obtained after optimization, in which the valve sealing stress is increased by 24.42% while keeping the maximum impact stress lower than 90% of the material allowable stress. The result confirms the ability and feasibility of the method proposed in this paper, and should also be suitable for performance design optimizations of control valves with similar structures.

The Optimization Analysis for the Selection of Cutting Parameters in Turning Operation

  • Hong, Min-Sung;Lian, Zhe-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.97-103
    • /
    • 2001
  • This paper has focused on the Optimization of the cutting parameters for urning operation based on the Taguchi method. Four cutting parameters. nemely, cutting speed, feed depth of cut and nose radius are optimized with consideration of the surface roughness. The design and analysis of experiments are conducted to study the performance characteristic. The effects of these parameters on the surface roughness have been investigated using signal-to-noise(S/N) ratio and analy-sis of variance(ANOVA). The experiments have been performed using coated tungsten carbide inserts without any cutting fluid. Experimental results illustrate the effectiveness of this approach.

  • PDF

Optimal seismic retrofit design method for asymmetric soft first-story structures

  • Dereje, Assefa Jonathan;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.677-689
    • /
    • 2022
  • Generally, the goal of seismic retrofit design of an existing structure using energy dissipation devices is to determine the optimum design parameters of a retrofit device to satisfy a specified limit state with minimum cost. However, the presence of multiple parameters to be optimized and the computational complexity of performing non-linear analysis make it difficult to find the optimal design parameters in the realistic 3D structure. In this study, genetic algorithm-based optimal seismic retrofit methods for determining the required number, yield strength, and location of steel slit dampers are proposed to retrofit an asymmetric soft first-story structure. These methods use a multi-objective and single-objective evolutionary algorithms, each of which varies in computational complexity and incorporates nonlinear time-history analysis to determine seismic performance. Pareto-optimal solutions of the multi-objective optimization are found using a non-dominated sorting genetic algorithm (NSGA-II). It is demonstrated that the developed multi-objective optimization methods can determine the optimum number, yield strength, and location of dampers that satisfy the given limit state of a three-dimensional asymmetric soft first-story structure. It is also shown that the single-objective distribution method based on minimizing plan-wise stiffness eccentricity turns out to produce similar number of dampers in optimum locations without time consuming nonlinear dynamic analysis.

Genetic algorithms for balancing multiple variables in design practice

  • Kim, Bomin;Lee, Youngjin
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.241-256
    • /
    • 2017
  • This paper introduces the process for Multi-objective Optimization Framework (MOF) which mediates multiple conflicting design targets. Even though the extensive researches have shown the benefits of optimization in engineering and design disciplines, most optimizations have been limited to the performance-related targets or the single-objective optimization which seek optimum solution within one design parameter. In design practice, however, designers should consider the multiple parameters whose resultant purposes are conflicting. The MOF is a BIM-integrated and simulation-based parametric workflow capable of optimizing the configuration of building components by using performance and non-performance driven measure to satisfy requirements including build programs, climate-based daylighting, occupant's experience, construction cost and etc. The MOF will generate, evaluate all different possible configurations within the predefined each parameter, present the most optimized set of solution, and then feed BIM environment to minimize data loss across software platform. This paper illustrates how Multi-objective optimization methodology can be utilized in design practice by integrating advanced simulation, optimization algorithm and BIM.

Collaborative optimization for ring-stiffened composite pressure hull of underwater vehicle based on lamination parameters

  • Li, Bin;Pang, Yong-jie;Cheng, Yan-xue;Zhu, Xiao-meng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.373-381
    • /
    • 2017
  • A Collaborative Optimization (CO) methodology for ring-stiffened composite material pressure hull of underwater vehicle is proposed. Structural stability and material strength are both examined. Lamination parameters of laminated plates are introduced to improve the optimization efficiency. Approximation models are established based on the Ellipsoidal Basis Function (EBF) neural network to replace the finite element analysis in layout optimizers. On the basis of a two-level optimization, the simultaneous structure material collaborative optimization for the pressure vessel is implemented. The optimal configuration of metal liner and frames and composite material is obtained with the comprehensive consideration of structure and material performances. The weight of the composite pressure hull decreases by 30.3% after optimization and the validation is carried out. Collaborative optimization based on the lamination parameters can optimize the composite pressure hull effectively, as well as provide a solution for low efficiency and non-convergence of direct optimization with design variables.

Performance Analysis and Design Optimization of Multi-Rate Spring Brake System (Multi-Rate 스프링 제동장치의 성능분석 및 최적설계)

  • Jung, Eui-Man;Won, Jun-Ho;Choi, Joo-Ho;Shim, In-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.67-72
    • /
    • 2010
  • In this study, performance analysis and design optimization is carried out for a multi-rate spring brake system, which is used in a cable ride to stop the arriving passengers in safe and comfortable manner. Mathematical model for the spring is developed toward the objective of minimizing the impact at the arrival while satisfying the constraint of limited distance at the stop. Matlab code is utilized to examine parameters affecting the performance of the brake system. The results are validated by a commercial software RecurDyn. Kriging meta model is used to reduce the computational cost of the analysis. Optimization is conducted by RecurDyn, from which the design parameters are determined that minimizes the impact at the stop.

Analysis on Performance and Noise Characteristics of the Design Parameters of a Cross-Flow Fan and its Optimization (횡류홴 설계 인자들의 성능/소음 특성 해석 및 최적화)

  • Cho Yong;Moon Young J.;Kwak Jiho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.767-770
    • /
    • 2002
  • The performance and noise characteristics of the design parameters of a cross-flow fan are investigated by computational methods. The incompressible Wavier-Stokes equations in moving coordinates are time-accurately solved for obtaining the pressure fluctuations due to the aerodynamic interactions between the impeller blades and the stabilizer, and sound pressure is then computed by the Ffowcs Williams-Hawkings equation. Design parameters of the cross-flow fan include blade setting angle, exit-diffusion angle, and stabilizer installation angle. Also, an optimization of the aforementioned design parameters has been peformed using the Taguchi method.

  • PDF