• Title/Summary/Keyword: Parameter learning

Search Result 667, Processing Time 0.025 seconds

A Study on the Teaching-Learning of Parameter Concept (매개변수 개념의 교수-학습에 관한 연구)

  • 김남희
    • Journal of Educational Research in Mathematics
    • /
    • v.14 no.3
    • /
    • pp.305-325
    • /
    • 2004
  • This study is on the teaching-learning of parameter concept in secondary school mathematics. In our school mathematics curriculum, parameter concept is explicitly presented at high school mathematics textbook. But student have difficulty in understanding parameter concept because this concept is implicitly used in the textbook from 7-grade mathematics. Moreover, it is true that mathematics teacher give a little attention to student's understanding of parameter con- cept. In this study, we analyzed concept definition of parameter and the extension of parameter on the basis of preceding research, our mathematical curriculum, mathematical dictionaries. After that, we concluded that parameter is explicitly called in t where x= f(t), y= g(t) and parameter is implicitly treated in the learning of relation between quantities in our mathematical curriculum. We pointed to the importance of parameter concept in the successful learning of school algebra. Specially, when the level of algebra is in the learning of relation between quantities, parameter is the key concept for understanding and representing of families of equations or functions. In mathematics class, students have opportunity to reflect that what the role of each variable(parameter, dependent variable, independent variable etc.) is, and where the information which determines it comes from. It is for mathematical communications as well as learning school algebra. Therefore, mathematics teacher's didactical attention is more needed to student have a good concept image of parameter before they learn explicitly its concept definition.

  • PDF

Torque Ripple Minimization of PMSM Using Parameter Optimization Based Iterative Learning Control

  • Xia, Changliang;Deng, Weitao;Shi, Tingna;Yan, Yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.425-436
    • /
    • 2016
  • In this paper, a parameter optimization based iterative learning control strategy is presented for permanent magnet synchronous motor control. This paper analyzes the mechanism of iterative learning control suppressing PMSM torque ripple and discusses the impact of controller parameters on steady-state and dynamic performance of the system. Based on the analysis, an optimization problem is constructed, and the expression of the optimal controller parameter is obtained to adjust the controller parameter online. Experimental research is carried out on a 5.2kW PMSM. The results show that the parameter optimization based iterative learning control proposed in this paper achieves lower torque ripple during steady-state operation and short regulating time of dynamic response, thus satisfying the demands for both steady state and dynamic performance of the speed regulating system.

Control and Parameter Estimation of Uncertain Robotic Systems by An Iterative Learning Method (불확실한 로보트 시스템의 제어와 파라미터 추정을 위한 반복학습제어기법)

  • Kuc, Tae-Yong;Lee, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.421-424
    • /
    • 1990
  • An iterative learning control scheme for exact-tracking control and parameter estimation of uncertain robotic systems is presented. In the learning control structure, tracking and feedforward input converge globally and asymptotically as iteration increases. Since convergence of parameter errors depends only on the persistent exciting condition of system trajectories along the iteration independently of length of trajectories, it may be achieved with only system trajectories of small duration. In addition, these learning control schemes are expected to be effectively applicable to time-varying parametric systems as well as time-invariant systems, for the parameter estimation is performed at each fixed time along the iteration. Finally, no usage of acceleration signal and no in version of estimated inertia matrix in the parameter estimator makes these learning control schemes more feasible.

  • PDF

The Parameter Learning Method for Similar Image Rating Using Pulse Coupled Neural Network

  • Matsushima, Hiroki;Kurokawa, Hiroaki
    • Journal of Multimedia Information System
    • /
    • v.3 no.4
    • /
    • pp.155-160
    • /
    • 2016
  • The Pulse Coupled Neural Network (PCNN) is a kind of neural network models that consists of spiking neurons and local connections. The PCNN was originally proposed as a model that can reproduce the synchronous phenomena of the neurons in the cat visual cortex. Recently, the PCNN has been applied to the various image processing applications, e.g., image segmentation, edge detection, pattern recognition, and so on. The method for the image matching using the PCNN had been proposed as one of the valuable applications of the PCNN. In this method, the Genetic Algorithm is applied to the PCNN parameter learning for the image matching. In this study, we propose the method of the similar image rating using the PCNN. In our method, the Genetic Algorithm based method is applied to the parameter learning of the PCNN. We show the performance of our method by simulations. From the simulation results, we evaluate the efficiency and the general versatility of our parameter learning method.

Control and Parameter Estimation of Uncertain Robotic Systems by An Iterative Learning Method (불확실한 로보트 시스템의 제어와 파라미터 추정을 위한 반복학습제어)

  • 국태용;이진수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.4
    • /
    • pp.427-438
    • /
    • 1991
  • An iterative learning control scheme for exact-tracking control and parameter estimation of uncertain robotic system is preented. In the learning control structure, the control input converges globally and asymtotically to the desired input as iteration increases. Since convergence of parameter errors depends only on the persistent exciting condition of system trajectories along the iteration independently of the time-duration of trajectories, it may be achieved with system trajectories with small duration. In addition, the proposd learning control schemes are applicable to time-varying parametric systems as well as time-invariant systems, because the parameter estimation is performed at each fixed time along the iteration. In the parameter estimator, the acceleration information as well as the inversion of estimated inertia matrix are not used at all, which makes the proposed learning control schemes more feasible.

  • PDF

A Structural Learning of MLP Classifiers Using PfSGA (PfSGA를 이용한 MLP 분류기의 구조 학습)

  • 愼晟孝;金 商雲
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1277-1280
    • /
    • 1998
  • We propose a structural learning method of MLP classifiers for a given application using PfSGA (parameter-free species genetic algorithm), which is a combining of species genetic algorithm(SGA) and parameter-free genetic algorithm(PfGA). experimental results show that PfSGA can reduce the learing time of SGA and has no influence of parameter values on structural learning. And we also convince that PfSGA is more efficient than the other methods in the aspect of misclassification ratio, learning rate, and complexity of MLP structure.

  • PDF

Accelerating Levenberg-Marquardt Algorithm using Variable Damping Parameter (가변 감쇠 파라미터를 이용한 Levenberg-Marquardt 알고리즘의 학습 속도 향상)

  • Kwak, Young-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.57-63
    • /
    • 2010
  • The damping parameter of Levenberg-Marquardt algorithm switches between error backpropagation and Gauss-Newton learning and affects learning speed. Fixing the damping parameter induces some oscillation of error and decreases learning speed. Therefore, we propose the way of a variable damping parameter with referring to the alternation of error. The proposed method makes the damping parameter increase if error rate is large and makes it decrease if error rate is small. This method so plays the role of momentum that it can improve learning speed. We tested both iris recognition and wine recognition for this paper. We found out that this method improved learning speed in 67% cases on iris recognition and in 78% cases on wine recognition. It was also showed that the oscillation of error by the proposed way was less than those of other algorithms.

A Structure of Personalized e-Learning System Using On/Off-line Mixed Estimations Based on Multiple-Choice Items

  • Oh, Yong-Sun
    • International Journal of Contents
    • /
    • v.5 no.1
    • /
    • pp.51-55
    • /
    • 2009
  • In this paper, we present a structure of personalized e-Learning system to study for a test formalized by uniform multiple-choice using on/off line mixed estimations as is the case of Driver :s License Test in Korea. Using the system a candidate can study toward the license through the Internet (and/or mobile instruments) within the personalized concept based on IRT(item response theory). The system accurately estimates user's ability parameter and dynamically offers optimal evaluation problems and learning contents according to the estimated ability so that the user can take possession of the license in shorter time. In order to establish the personalized e-Learning concepts, we build up 3 databases and 2 agents in this system. Content DB maintains learning contents for studying toward the license as the shape of objects separated by concept-unit. Item-bank DB manages items with their parameters such as difficulties, discriminations, and guessing factors, which are firmly related to the learning contents in Content DB through the concept of object parameters. User profile DB maintains users' status information, item responses, and ability parameters. With these DB formations, Interface agent processes user ID, password, status information, and various queries generated by learners. In addition, it hooks up user's item response with Selection & Feedback agent. On the other hand, Selection & Feedback agent offers problems and content objects according to the corresponding user's ability parameter, and re-estimates the ability parameter to activate dynamic personalized learning situation and so forth.

Supervised Learning Artificial Neural Network Parameter Optimization and Activation Function Basic Training Method using Spreadsheets (스프레드시트를 활용한 지도학습 인공신경망 매개변수 최적화와 활성화함수 기초교육방법)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.13 no.2
    • /
    • pp.233-242
    • /
    • 2021
  • In this paper, as a liberal arts course for non-majors, we proposed a supervised learning artificial neural network parameter optimization method and a basic education method for activation function to design a basic artificial neural network subject curriculum. For this, a method of finding a parameter optimization solution in a spreadsheet without programming was applied. Through this training method, you can focus on the basic principles of artificial neural network operation and implementation. And, it is possible to increase the interest and educational effect of non-majors through the visualized data of the spreadsheet. The proposed contents consisted of artificial neurons with sigmoid and ReLU activation functions, supervised learning data generation, supervised learning artificial neural network configuration and parameter optimization, supervised learning artificial neural network implementation and performance analysis using spreadsheets, and education satisfaction analysis. In this paper, considering the optimization of negative parameters for the sigmoid neural network and the ReLU neuron artificial neural network, we propose a training method for the four performance analysis results on the parameter optimization of the artificial neural network, and conduct a training satisfaction analysis.

Extraction of the OLED Device Parameter based on Randomly Generated Monte Carlo Simulation with Deep Learning (무작위 생성 심층신경망 기반 유기발광다이오드 흑점 성장가속 전산모사를 통한 소자 변수 추출)

  • You, Seung Yeol;Park, Il-Hoo;Kim, Gyu-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.131-135
    • /
    • 2021
  • Numbers of studies related to optimization of design of organic light emitting diodes(OLED) through machine learning are increasing. We propose the generative method of the image to assess the performance of the device combining with machine learning technique. Principle parameter regarding dark spot growth mechanism of the OLED can be the key factor to determine the long-time performance. Captured images from actual device and randomly generated images at specific time and initial pinhole state are fed into the deep neural network system. The simulation reinforced by the machine learning technique can predict the device parameters accurately and faster. Similarly, the inverse design using multiple layer perceptron(MLP) system can infer the initial degradation factors at manufacturing with given device parameter to feedback the design of manufacturing process.