• 제목/요약/키워드: Parameter estimation method

검색결과 1,572건 처리시간 0.028초

비스듬히 던진 물체의 공기저항을 고려한 재귀 최소 자승법 기반 실시간 포물선 운동 궤적 추정 (Real-time Projectile Motion Trajectory Estimation Considering Air Resistance of Obliquely Thrown Object Using Recursive Least Squares Estimation)

  • 정상윤;좌동경
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.427-432
    • /
    • 2018
  • This paper uses a recursive least squares method to estimate the projectile motion trajectory of an object in real time. The equations of motion of the object are obtained considering the air resistance which occurs in the actual experiment environment. Because these equations consider air resistance, parameter estimation of nonlinear terms is required. However, nonlinear recursive least squares estimation is not suitable for estimating trajectory of projectile in that it requires a lot of computation time. Therefore, parameter estimation for real-time trajectory prediction is performed by recursive least square estimation after using Taylor series expansion to approximate nonlinear terms to polynomials. The proposed method is verified through experiments by using VICON Bonita motion capture system which can get three dimensional coordinates of projectile. The results indicate that proposed method is more accurate than linear Kalman filter method based on the equations of motion of projectile that does not consider air resistance.

딥 뉴럴 네트워크를 이용한 새로운 리튬이온 배터리의 SOC 추정법 (A Novel SOC Estimation Method for Multiple Number of Lithium Batteries Using a Deep Neural Network)

  • 아사드 칸;고영휘;최우진
    • 전력전자학회논문지
    • /
    • 제26권1호
    • /
    • pp.1-8
    • /
    • 2021
  • For the safe and reliable operation of lithium-ion batteries in electric vehicles or energy storage systems, having accurate information of the battery, such as the state of charge (SOC), is essential. Many different techniques of battery SOC estimation have been developed, such as the Kalman filter. However, when this filter is applied to multiple batteries, it has difficulty maintaining the accuracy of the estimation over all cells owing to the difference in parameter values of each cell. The difference in the parameter of each cell may increase as the operation time accumulates due to aging. In this paper, a novel deep neural network (DNN)-based SOC estimation method for multi-cell application is proposed. In the proposed method, DNN is implemented to determine the nonlinear relationships of the voltage and current at different SOCs and temperatures. In the training, the voltage and current data obtained at different temperatures during charge/discharge cycles are used. After the comprehensive training with the data obtained from the cycle test with a cell, the resulting algorithm is applied to estimate the SOC of other cells. Experimental results show that the mean absolute error of the estimation is 1.213% at 25℃ with the proposed DNN-based SOC estimation method.

A Novel Sensorless Low Speed Vector Control for Synchronous Reluctance Motors Using a Block Pulse Function-Based Parameter Identification

  • Ahmad Ghaderi;Tsuyoshi Hanamoto;Teruo Tsuji
    • Journal of Power Electronics
    • /
    • 제6권3호
    • /
    • pp.235-244
    • /
    • 2006
  • Recently, speed sensorless vector control for synchronous reluctance motors (SYRMs) has deserved attention because of its advantages. Although rotor angle calculation using flux estimation is a straightforward approach, the DC offset can cause an increasing pure integrator error in this estimator. In addition, this method is affected by parameter fluctuation. In this paper, to control the motor at the low speed region, a modified programmable cascaded low pass filter (MPCPLF) with sensorless online parameter identification based on a block pulse function is proposed. The use of the MPCLPF is suggested because in programmable, cascade low pass filters (PCLPF), which previously have been applied to induction motors, the drift increases vastly wl)en motor speed decreases. Parameter identification is also used because it does not depend on estimation accuracy and can solve parameter fluctuation effects. Thus, sensorless speed control in the low speed region is possible. The experimental system includes a PC-based control with real time Linux and an ALTERA Complex Programmable Logic Device (CPLD), to acquire data from sensors and to send commands to the system. The experimental results show the proposed method performs well, speed and angle estimation are correct. Also, parameter identification and sensorless vector control are achieved at low speed, as well as, as at high speed.

A Study on Sensorless Control of Transverse Flux Rotating Motor Based on MRAS with Parameter Estimation

  • Kim, Ji-Won;Kim, Kwang-Woon;Kisck, Dragos Ovidiu;Kang, Do-Hyun;Chang, Jung-Hwan;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • 제11권6호
    • /
    • pp.864-869
    • /
    • 2011
  • This paper presents a sensorless control and parameter estimation strategies for a Transverse Flux Rotating Motor (TFRM). The proposed sensorless control method is based on a Model Reference Adaptive System (MRAS) to estimate the stator flux. Parameter estimation theory is also applied into the sensorless control method to estimate motor parameters, such as inductances. The effectiveness of the proposed methods is verified by some simulations and experiments.

Online Parameter Estimation for Wireless Power Transfer Systems Using the Tangent of the Reflected Impedance Angle

  • Li, Shufan;Liao, Chenglin;Wang, Lifang
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.300-308
    • /
    • 2018
  • An online estimation method for wireless power transfer (WPT) systems is presented without using any measurement of the secondary side or the load. This parameter estimation method can be applied with a controlling strategy that removes both the receiving terminal controller and the wireless communication. This improves the reliability of the system while reducing its costs and size. In a wireless power transfer system with an LCCL impedance matching circuit under a rectifier load, the actual load value, voltage/current and mutual inductance can be reflected through reflected impedance measuring at the primary side. The proposed method can calculate the phase angle tangent value of the secondary loop circuit impedance via the reflected impedance, which is unrelated to the mutual inductance. Then the load value can be determined based on the relationships between the load value and the secondary loop impedance. After that, the mutual inductance and transfer efficiency can be computed. According to the primary side voltage and current, the load voltage and current can also be detected in real-time. Experiments have verified that high estimation accuracy can be achieved with the proposed method. A single-controller based on the proposed parameter estimation method is established to achieve constant current control over a WPT system.

The Effect of Methods of Estimating the Ability on The Accuracy and Items Parameters According to 3PL Model

  • Almaleki, Deyab A.;Alomrany, Ahoud Ghazi
    • International Journal of Computer Science & Network Security
    • /
    • 제21권7호
    • /
    • pp.93-102
    • /
    • 2021
  • This study aimed to test method on the accuracy of estimating the items parameters and ability, using the Three Parameter Logistic. To achieve the objectives of the study, an achievement test in chemistry was constructed for third-year secondary school students in the course of "natural sciences". A descriptive approach was employed to conduct the study. The test was applied to a sample of (507) students of the third year of secondary school in the "Natural Sciences Course". The study's results revealed that the (EAP) method showed a higher degree of accuracy in the estimation of the difficulty parameter and the abilities of persons higher than the MML method. There were no statistically significant differences in the accuracy of the parameter estimation of discrimination and guessing regarding the difference of the two methods: (MML) and (EAP).

Parameter Estimation of Single and Decentralized Control Systems Using Pulse Response Data

  • Cheres, Eduard;Podshivalov, Lev
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권3호
    • /
    • pp.279-284
    • /
    • 2003
  • The One Pass Method (OPM) previously presented for the identification of single input single output systems is used to estimate the parameters of a Decentralized Control System (DCS). The OPM is a linear and therefore a simple estimation method. All of the calculations are performed in one pass, and no initial parameter guess, iteration, or powerful search methods are required. These features are of interest especially when the parameters of multi input-output model are estimated. The benefits of the OPM are revealed by comparing its results against those of two recently published methods based on pulse testing. The comparison is performed using two databases from the literature. These databases include single and multi input-output process transfer functions and relevant disturbances. The closed loop responses of these processes are roughly captured by the previous methods, whereas the OPM gives much more accurate results. If the parameters of a DCS are estimated, the OPM yields the same results in multi or single structure implementation. This is a novel feature, which indicates that the OPM is a convenient and practice method for the parameter estimation of multivariable DCSs.

불확정 시스템에서의 복합성 이상검출 및 격리 (Composite Fault Detection and Isolation for Uncertain Systems)

  • 유호준;김대우;권오규
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권3호
    • /
    • pp.257-262
    • /
    • 1999
  • This paper proposes a composite fault detection and isolation method by combining the parameter estimation method[1] with the observer-based method[2] to take advantages of both methods. Some properties of the parameter estimation method and the observer-based method are revieved, and the composite algorithm is presented. To exemplify the performance of the method proposed, some simulations applied to remotely piloted vehicle are performed.

  • PDF

A Study on Parameter Estimation for General Aviation Canard Aircraft

  • Kim, Eung Tai;Seong, Kie-Jeong;Kim, Yeong-Cheol
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권3호
    • /
    • pp.425-436
    • /
    • 2015
  • This paper presents the procedures used for estimating the stability and control derivatives of a general aviation canard aircraft from flight data. The maximum likelihood estimation method which accounts for both process and measurement noise was used for the flight data analysis of a four seat canard aircraft, the Firefly. Without relying on the parameter estimation method, several aerodynamic derivatives were obtained by analyzing the steady state flight data. A wind tunnel test, a flight test of a 1/4 scaled remotely controlled model aircraft, and the prediction of aerodynamic coefficients using the USAF Stability and Control Digital Data Compendium (DATCOM), Advanced Aircraft Analysis (AAA), and Computer Fluid Dynamics (CFD) were performed during the development phase of the Firefly and the results were compared with flight determined derivatives of a full scaled flight prototype. A correlation between the results from each method could be used for the design of the canard aircraft as well as for building the aerodynamic database.

Measurement-based Estimation of the Composite Load Model Parameters

  • Kim, Byoung-Ho;Kim, Hong-Rae
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.845-851
    • /
    • 2012
  • Power system loads have a significant impact on a system. Although it is difficult to precisely describe loads in a mathematical model, accurately modeling them is important for a system analysis. The traditional load modeling method is based on the load components of a bus. Recently, the load modeling method based on measurements from a system has been introduced and developed by researchers. The two major components of a load modeling problem are determining the mathematical model for the target system and estimating the parameters of the determined model. We use the composite load model, which has both static and dynamic load characteristics. The ZIP model and the induction motor model are used for the static and dynamic load models, respectively. In this work, we propose the measurement-based parameter estimation method for the composite load model. The test system and related measurements are obtained using transient security assessment tool(TSAT) simulation program and PSS/E. The parameter estimation is then verified using these measurements. Cases are tested and verified using the sample system and its related measurements.