• Title/Summary/Keyword: Parameter calibration

Search Result 412, Processing Time 0.025 seconds

Calibration and uncertainty analysis of integrated surface-subsurface model using iterative ensemble smoother for regional scale surface water-groundwater interaction modeling

  • Bisrat Ayalew Yifru;Seoro Lee;Woon Ji Park;Kyoung Jae Lim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.287-287
    • /
    • 2023
  • Surface water-groundwater interaction (SWGI) is an important hydrological process that influences both the quantity and quality of water resources. However, regional scale SWGI model calibration and uncertainty analysis have been a challenge because integrated models inherently carry a vast number of parameters, modeling assumptions, and inputs, potentially leaving little time and budget to explore questions related to model performance and forecasting. In this study, we have proposed the application of iterative ensemble smoother (IES) for uncertainty analysis and calibration of the widely used integrated surface-subsurface model, SWAT-MODFLOW. SWAT-MODFLOW integrates Soil and Water Assessment Tool (SWAT) and a three-dimensional finite difference model (MODFLOW). The model was calibrated using a parameter estimation tool (PEST). The major advantage of the employed IES is that the number of model runs required for the calibration of an ensemble is independent of the number of adjustable parameters. The pilot point approach was followed to calibrate the aquifer parameters, namely hydraulic conductivity, specific storage, and specific yield. The parameter estimation process for the SWAT model focused primarily on surface-related parameters. The uncertainties both in the streamflow and groundwater level were assessed. The work presented provides valuable insights for future endeavors in coupled surface-subsurface modeling, data collection, model development, and informed decision-making.

  • PDF

IMU calibration technique and laboratory test (관성측정장치의 오차계수 식별기법 및 실험)

  • 성상만;이달호;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.664-667
    • /
    • 1996
  • This paper presents the error parameter estimation technique for IMU(Inertial Measurement Unit) which is core sensor of INS(Inertial Navigation System) and verifies it via laboratory test. Firstly the error characteristic of gyroscope and accelerometer which is contained in IMU is examined and the error modelling is executed. The error of IMU can be divided into deterministic and random part, and the deterministic error can be divided into static and dynamic part. This paper consider the random part as constant. Secondly the error parameter estimation technique and following procedure for laboratory test is explained. Thirdly according to the test procedure the IMU test for static error is executed using 2-axis rate table and estimation result is presented with discussion about its validity.

  • PDF

Parameter Estimation for Nash Model and Diskin Model by Optimization Techniques (최적화 기법을 이용한 Nash 모형과 Diskin 모형의 매개변수 추정)

  • Choi, Min-Ha;Ahn, Jae-Hyun;Kim, Joong-Hoon;Yoon, Yong-Nam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.3 s.3
    • /
    • pp.73-82
    • /
    • 2001
  • This study examines the applicability of the Nash model and the Diskin model, which are linear and nonlinear runoff models, respectively, by applying optimization techniques to the parameter calibration of the two models. Nonlinear programming which is one of traditional optimization techniques and Genetic Algorithm which has been actively applied recently are used in this study. The Nash and Diskin models which use the calibrated parameter with a flood events are applied to a different flood event in Soyang Dam basin. The results obtained from the parameter calibration show slight discrepancy depending upon the flood events. It has been found in the comparion between the observed hydrograph and the hydrographs obtained from the parameter calibration that the Diskin model can better simulate the observed hydrograph than the Nash model can, especially, for the peak flow. This can be analyzed that the Diskin model which is a nonlinear runoff model is better off in simulating the nonlinear characteristic of the rainfall-runoff process.

  • PDF

Calibration and Estimation of Parameter for Storage Function Model (저류함수모형의 매개변수 보정 및 추정)

  • Kim, Bum Jun;Kawk, Jae Won;Lee, Jin Hee;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.21-32
    • /
    • 2008
  • Flood forecasting is a very important tool as one of nonstructural measures for reduction of flood damages in life and property and its accuracy is also an important factor. However, when we apply the Storage Function Model(SFM) which is mainly used for the flood forecasting system in Korea, the determination of the parameters is very important but it is difficult. So, the parameters have been calibrated by using an empirical formulas and judgement of hydrologist. Hence, in this study we perform the sensitivity analysis to understand the parameter characteristics and establish the ranges of parameters of the SFM. Also we do the parameter calibration by using the optimization techniques and objective functions, and evaluate their performances. Especially, we suggest a method to determine proper parameters by using a objective function which can be obtained from flood events. So, we use the suggested method for parameter estimation and compare the estimated parameters with the previously reported parameters. As a result of the application, the estimated parameters by the suggested method showed better than them from the previously reported parameters.

Automatic Calibration for Noncontinuous Observed Data using HSPF-PEST (HSPF-PEST를 이용한 불연속 실측치 자동보정)

  • Jeon, Ji-Hong;Lee, Sae-Bom
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.111-119
    • /
    • 2012
  • Applicability of 8 day interval flow data for the calibration of hydrologic model was evaluated using Hydrological Simulation Program-Fortran (HSPF) at Kyungan watershed. The 8 day interval flow monitored by Ministry of Environment located at upstream was calibrated and periodically validated during 2004-2008. And continuous daily flow monitored by Ministry of Construction & Transportation (MOCT) and located at the mouth was compared with daily simulated data during 2004-2007 as spatial validation. Automatic calibration tool which is Model-Independent Parameter Estimation & Uncertainty Analysis (PEST) was applied for HSPF calibration procedure. The model efficiencies for calibration and periodic validation were 0.63 and 0.88, and model performances were fair and very good, respectively, based on criteria of calibration tolerances. Continuous daily stream flow at the mouth of Kyungan watershed were good agreement with observed continuous daily stream flow with showing 0.63 NS value. The PEST program is very useful tool for HSPF hydrologic calibration using non-continuous daily stream flow as well as continuous daily stream flow. The 8 day interval flow data monitored by MOE could be used to calibrate hydrologic model if the continuous daily stream flow is unavailable.

Development of a Camera Self-calibration Method for 10-parameter Mapping Function

  • Park, Sung-Min;Lee, Chang-je;Kong, Dae-Kyeong;Hwang, Kwang-il;Doh, Deog-Hee;Cho, Gyeong-Rae
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.183-190
    • /
    • 2021
  • Tomographic particle image velocimetry (PIV) is a widely used method that measures a three-dimensional (3D) flow field by reconstructing camera images into voxel images. In 3D measurements, the setting and calibration of the camera's mapping function significantly impact the obtained results. In this study, a camera self-calibration technique is applied to tomographic PIV to reduce the occurrence of errors arising from such functions. The measured 3D particles are superimposed on the image to create a disparity map. Camera self-calibration is performed by reflecting the error of the disparity map to the center value of the particles. Vortex ring synthetic images are generated and the developed algorithm is applied. The optimal result is obtained by applying self-calibration once when the center error is less than 1 pixel and by applying self-calibration 2-3 times when it was more than 1 pixel; the maximum recovery ratio is 96%. Further self-correlation did not improve the results. The algorithm is evaluated by performing an actual rotational flow experiment, and the optimal result was obtained when self-calibration was applied once, as shown in the virtual image result. Therefore, the developed algorithm is expected to be utilized for the performance improvement of 3D flow measurements.

Advanced On-chip SOL Calibration Method for Unknown Fixture De-embedding

  • Yoon, Changwook;Chen, Bichen;Ye, Xiaoning;Fan, Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.543-551
    • /
    • 2017
  • SOL (Short, Open and Load) calibration based on iterative error sensitivity is proposed in this paper. With advanced SOL calibration, unknown parasitic parameters at on-chip terminations are accurately estimated up to 20 GHz. Artificial terminations are designed on printed circuit board (PCB) to experiment the proposed method. On-chip SHORT, OPEN and LOAD fabricated inside silicon shows the accuracy of proposed calibration method through the comparison with known fixture S-parameter after de-embedding.

ICALIB: A Heuristic and Machine Learning Approach to Engine Model Calibration (휴리스틱 및 기계 학습을 응용한 엔진 모델의 보정)

  • Kwang Ryel Ryu
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.11
    • /
    • pp.84-92
    • /
    • 1993
  • Calibration of Engine models is a painstaking process but very important for successful application to automotive industry problems. A combined heuristic and machine learning approach has therefore been adopted to improve the efficiency of model calibration. We developed an intelligent calibration program called ICALIB. It has been used on a daily basis for engine model applications, and has reduced the time required for model calibrations from many hours to a few minutes on average. In this paper, we describe the heuristic control strategies employed in ICALIB such as a hill-climbing search based on a state distance estimation function, incremental problem solution refinement by using a dynamic tolerance window, and calibration target parameter ordering for guiding the search. In addition, we present the application of amachine learning program called GID3*for automatic acquisition of heuristic rules for ordering target parameters.

  • PDF

System calibration method for Silicon wafer warpage measurement (실리콘 웨이퍼 휨형상 측정 정밀도 향상을 위한 시스템변수 보정법)

  • Kim, ByoungChang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.139-144
    • /
    • 2014
  • As a result of a mismatch of the residual stress between both sides of the silicon wafer, which warps and distorts during the patterning process. The accuracy of the warpage measurement is related to the calibration. A CCD camera was used for the calibration. Performing optimization of the error function constructed with phase values measured at each pixel on the CCD camera, the coordinates of each light source can be precisely determined. Measurement results after calibration was performed to determine the warpage of the silicon wafer demonstrate that the maximum discrepancy is $5.6{\mu}m$ with a standard deviation of $1.5{\mu}m$ in comparison with the test results obtained by using a Form TalySurf instrument.

Evaluating Calibration Methods of Stream Flow for Water Quality Management (수질학적 관점에서의 수문모델 유출량 보정 방법 평가)

  • Jeon, Ji-Hong;Choi, Donghyuk;Kim, Jung-Jin;Kim, Taedong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.432-440
    • /
    • 2009
  • The effect of selecting hydrologic item for calculating objective function on calibration of stream flow was evaluated by Hydrologic Simulation Porgram-Fortran (HSPF) linked with Model Independent Parameter Optimizer (PEST). Daily and monthly stream flow and flow duration were used to calculate objective function. Automated calibration focused on monthly stream was proper to analyze seasonal or yearly water budget but not proper to predict daily stream flow or percent chance flow exceeded. Calibration result focused on flow duration is proper to predict precent chance flow exceeded but not proper to analyze water budget or predict peak flow. These results indicate that hydrologic item calculated for objective function on calibration procedure could influence calibration results and watershed modeler should select carefully hydrologic item for the purpose of model application. Current, the criteria of stream flow of Korean TMDL is generated based on percent chance flow exceeded, so flow duration should be included to calculate objective function on calibration procedure for the estimation of criteria of stream flow using hydrologic model.