• Title/Summary/Keyword: Parameter Studies

Search Result 1,533, Processing Time 0.024 seconds

Estimation on the Distribution Function for Coastal Air Temperature Data in Korean Coasts (한반도 연안 기온자료의 분포함수 추정)

  • Jeong, Shin Taek;Cho, Hongyeon;Ko, Dong Hui;Hwang, Jae Dong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.278-284
    • /
    • 2014
  • Water temperature due to climate change can be estimated using the air temperature because the air and water temperatures are closely related and the water temperatures have been widely used as the indicators of the environmental and ecological changes. It is highly necessary to estimate the frequency distribution of the air and water temperatures, for the climate change derives the change of the coastal water temperatures. In this study, the distribution function of the air temperatures is estimated by using the long-term coastal air temperature data sets in Korea. The candidate distribution function is the bi-modal distribution function used in the previous studies, such as Cho et al.(2003) on tidal elevation data and Jeong et al.(2013) on the coastal water temperature data. The parameters of the function are optimally estimated based on the least square method. It shows that the optimal parameters are highly correlated to the basic statistical informations, such as mean, standard deviation, and skewness coefficient. The RMS error of the parameter estimation using statistical information ranges is about 5 %. In addition, the bimodal distribution fits good to the overall frequency pattern of the air temperature. However, it can be regarded as the limitations that the distribution shows some mismatch with the rapid decreasing pattern in the high-temperature region and the some small peaks.

Evaluation of Robust Performance of Fuzzy Supervisory Control Technique (퍼지관리제어기법의 강인성능평가)

  • Ok, Seung-Yong;Park, Kwan-Soon;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.41-52
    • /
    • 2005
  • Using the variable control gain scheme on the basis of fuzzy-based decision-making process, Fuzzy supervisory control (FSC) technique exhibits better control performance than linear control technique with one static control gain. This paper demonstrates the effectiveness of the FSC technique by evaluating the robust performance of the FSC technique under the presence of uncertainties in the models and the excitations. Robust performance of the FSC system is compared with that of optimally designed LQG control system for the benchmark cable-stayed bridge presented by Dyke et al. Parameter studies on the robust performance evaluation are carried out by varying the stiffness of the bridge model as well as the magnitudes of several earthquakes with different frequency contents. From the comparative study of two control systems, FSC system shows the enhanced control performance against various magnitudes of several earthquakes while maintaining lower level of power required for controlling the bridge response. Especially, FSC system clearly guarantees the improved robust performance of the control system with stable reduction effects on the seismic responses and slight increases in total power and stroke for the control system, while LQG control system exhibits poor robust performance.

An Experimental Study on Stress-Strain Behavior of Sands under Three Dimentional Stress (삼차원(三次元) 응력조건하(應力條件下)의 모래의 응력(應力)-변형거동(變形擧動)에 관한 실험적(實驗的) 연구(硏究))

  • Chung, Hyung Sik;Chun, Byung Sik;Lee, Hyoung Soo;Koh, Yong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.153-166
    • /
    • 1991
  • In an attempt to investigate the effect of intermedate principal stresses which are related to the stress-strain behavior of standard sands, a series of three-Principal stress control tests were conducted for individual stress paths. The results have shown that shear strengths of sands vary with the stress paths. The variations in internal friction angle are accorded with the Habibs stress parameter, b which represents Stress paths, showing on abropt increase at the values between 0.0 and 0.268, a moderate level between 0.268 and 0.682, and a slight decrease between 0.682 and 1.0 However, the friction angles under a triaxial extention state, were found relatively larger than under a triaxial compression state. In general, such veriations were found to have the same tendency without any relevant relation with the density of specimens and confining pressures. Therefore, it is concluded, that the shear strength of sands are positively influeced by the intermediate principal stresses present in the media. And the influnce of intermediate principal stresses on shear strengths of sands found from the present study are well compared with the previous studies by Lade-Duncan and Matsuoka-Nakai revealing a similar tendency within the failure criteria proposed by them.

  • PDF

Evaluation of Microcracks in Thermal Damaged Concrete Using Nonlinear Ultrasonic Modulation Technique (비선형 초음파 변조 기법을 이용한 열손상 콘크리트의 미세균열 평가)

  • Park, Sun-Jong;Yim, Hong Jae;Kwak, Hyo-Gyung
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.651-658
    • /
    • 2012
  • This paper concentrates on the evaluation of microcracks in thermal damaged concrete on the basis of the nonlinear ultrasonic modulation technique. Since concrete structure exposed to high temperature accompanies the development of microcracks due to the physical and chemical changes from temperature and exposed time, the adoption of nonlinear approach is required. Instead of using the conventional ultrasonic nondestructive methods which have the limitation in evaluating excessive microcracks, accordingly, a nonlinear ultrasonic modulation method which shows better sensitivity in quantifying microcracks is introduced. Upon the analysis for the modulation of ultrasonic wave and low frequency impact to measure the nonlinearity parameter, which can be used as an indicator of thermal damage, the verification processes for the introduced technique are followed: SEM investigation and permeable pore space test are performed to characterize thermally induced microcracks in concrete, and ultrasonic pulse velocity tests are performed to confirm the outstanding sensitivity of nonlinear ultrasonic modulation technique. In advance, compressive strength of thermal damaged concrete is measured to represent the effect of microcracks on performance degradation. Correlation studies between experimental data and measured data show that nonlinear ultrasonic modulation technique can effectively be used to quantify thermally induced microcracks, and to estimate the compressive strength of thermally damaged concrete.

Baseline Model Updating and Damage Estimation Techniques for Tripod Substructure (트라이포드 하부구조물의 기저모델개선 및 결함추정 기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.218-226
    • /
    • 2020
  • An experimental study was conducted on baseline model updating and damage estimation techniques for the health monitoring of offshore wind turbine tripod substructures. First, a procedure for substructure health monitoring was proposed. An initial baseline model for a scaled model of a tripod substructure was established. A baseline model was updated based on the natural frequencies and the mode shapes measured in the healthy state. A training pattern was then generated using the updated baseline model, and the damage was estimated by inputting the modal parameters measured in the damaged state into the trained neural network. The baseline model could be updated reasonably using the effective fixity model. The damage tests were performed, and the damage locations could be estimated reasonably. In addition, the estimated damage severity also increased as the actual damage severity increased. On the other hand, when the damage severity was relatively small, the corresponding damage location was detected, but it was more difficult to identify than the other cases. Further studies on small damage estimation and stiffness reduction quantification will be needed before the presented method can be used effectively for the health monitoring of tripod substructures.

Frame-Layer H.264 Rate Control for Scene-Change Video at Low Bit Rate (저 비트율 장면 전환 영상에 대한 향상된 H.264 프레임 단위 데이터율 제어 알고리즘)

  • Lee, Chang-Hyun;Jung, Yun-Ho;Kim, Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.127-136
    • /
    • 2007
  • An abrupt scene-change frame is one that is hardly correlated with the previous frames. In that case, because an intra-coded frame has less distortion than an inter-coded one, almost all macroblocks are encoded in intra mode. This breaks up the rate control flow and increases the number of bits used. Since the reference software for H.264 takes no special action for a scene-change frame, several studies have been conducted to solve the problem using the quadratic R-D model. However, since this model is more suitable for inter frames, the existing schemes are unsuitable for computing the QP of the scene-change intra frame. In this paper, an improved rate control scheme accounting for the characteristics of intra coding is proposed for scene-change frames. The proposed scheme was validated using 16 test sequences. The results showed that the proposed scheme performed better than the existing H.264 rate control schemes. The PSNR was improved by an average of 0.4-0.6 dB and a maximum of 1.1-1.6 dB. The PSNR fluctuation was also in proved by an average of 18.6 %.

Application of groundwater-level prediction models using data-based learning algorithms to National Groundwater Monitoring Network data (자료기반 학습 알고리즘을 이용한 지하수위 변동 예측 모델의 국가지하수관측망 자료 적용에 대한 비교 평가 연구)

  • Yoon, Heesung;Kim, Yongcheol;Ha, Kyoochul;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.23 no.2
    • /
    • pp.137-147
    • /
    • 2013
  • For the effective management of groundwater resources, it is necessary to predict groundwater level fluctuations in response to rainfall events. In the present study, time series models using artificial neural networks (ANNs) and support vector machines (SVMs) have been developed and applied to groundwater level data from the Gasan, Shingwang, and Cheongseong stations of the National Groundwater Monitoring Network. We designed four types of model according to input structure and compared their performances. The results show that the rainfall input model is not effective, especially for the prediction of groundwater recession behavior; however, the rainfall-groundwater input model is effective for the entire prediction stage, yielding a high model accuracy. Recursive prediction models were also effective, yielding correlation coefficients of 0.75-0.95 with observed values. The prediction errors were highest for Shingwang station, where the cross-correlation coefficient is lowest among the stations. Overall, the model performance of SVM models was slightly higher than that of ANN models for all cases. Assessment of the model parameter uncertainty of the recursive prediction models, using the ratio of errors in the validation stage to that in the calibration stage, showed that the range of the ratio is much narrower for the SVM models than for the ANN models, which implies that the SVM models are more stable and effective for the present case studies.

Strengthening Effect of Axial Square Concrete Members Wrapped by CFRP sheet (CFRP 쉬트로 보강된 사각형 콘크리트 압축부재의 보강 효과)

  • Moon, Kyoung-Tae;Park, Sang-Yeol;Koh, Kwang-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.13-23
    • /
    • 2017
  • This study deals with the strengthening effect and behavioral characteristics of square concrete column wrapped with carbon FRP sheet. The increase in axial compression capacity comes from the confinement effect of wrapped CFRP sheet. Because of the shape of square concrete column, the confinement effect is smaller than that in circular column. For the experimental program, four parameters including the number of sheet, the size of column specimen, the aspect ratio, the corner rounding, and the transformation in shape from square to circular were selected to examine the strengthening effect and behavioral characteristics for each parameter. Experimental program comprised fifty five square concrete column specimens for different eleven types. The compression test results confirmed that the strengthening effect can be increased by the confinement of wrapped and bonded CFRP sheet. However, the confining effect was decreased with the increase of square column size. The other hand, the ductility in square concrete column greatly increased due to caging effect of CFRP sheet. The transformation in shape from square to circular considerably increased both the compressive strength and the ductility of the concrete column wrapped with CFRP sheet. In addition, using test results and existing studies, accuracy and reliability of the existing strength models for CFRP-confined square concrete are verified.

Experimental Study on Reinforcement Effects of PET Sheet (PET 섬유의 보강효과에 관한 실험적 연구)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.163-169
    • /
    • 2017
  • Although the strength of polyethylene terephthalate (PET) fibers which are generally used to make plastic bottles is low, the deformability of PET fibers is substantially high. Due to these material characteristics, a PET fiber can be used as a reliable strengthening material to resist a large deformation caused by earthquake and research pertinent to application of PET fibers is actively conducted in Japan. Therefore, in this study, experiments have been carried out to investigate the lateral confinement effect of PET fibers and to assess the applicability of PET fibers to construction fields by comparing the strengthening effect of PET fibers to that of carbon and glass fiber sheets. For this purpose, concrete cylinder specimens with parameters of different concrete strength and strengthening layers of carbon fiber sheets, glass fiber sheets, and PET fibers were respectively tested using two sets of cylinders for each parameter. As a result, specimens strengthened with carbon fiber sheets and glass fiber sheets failed due to sudden decrease of strength as with existing studies. However, specimens with PET fibers reached their maximum strength and then failed after gradual decrease strength without failure of PET fibers. In addition, although the strength of specimens with PET fibers did not significantly increase in comparison with that of specimens with carbon fiber sheets and glass fiber sheets, specimens with PET fibers indicated considerable deformability. Thus, a PET fiber can be considered as an effective strengthening material.

Association study analysis of phospholipase C zeta gene polymorphism forsperm motility and kinematic characteristics in liquid semen of Boar (Phospholipase C zeta 유전자의 유전적다형성과 돼지 액상정액의 운동학적 특성과의 연관성 분석)

  • Jeong, Yong-dae;Jeong, Jin-Young;Sa, Soo-Jin;Kim, Ki-Hyun;Cho, Eun-Seok;Yu, Dong-Jo;Park, Sungk-won;Jang, Hyun-Jun;Woo, Jae-Seok;Choi, Jung-Woo
    • Journal of Embryo Transfer
    • /
    • v.31 no.3
    • /
    • pp.293-297
    • /
    • 2016
  • For evaluating the boar semen quality, sperm motility is an important parameter because the movement of sperm indicates active metabolism, membrane integrity and fertilizing capacity. Phospholipase C zeta (PLCz) is important enzyme in spermatogenesis, but the effect has not been confirmed in pigs yet. Therefore, this study was aimed to analyze their association with sperm motility and kinematic characteristics. DNA samples from 124 Duroc pigs with records of sperm motility and kinematic characteristics [total motile spermatozoa (MOT), curvilinear velocity (VCL), straight-line velocity (VSL), the ratio between VSL and VCL (LIN), amplitude of lateral head displacement (ALH)] were subjected. A SNP in non-coding region of PLCz g.158 A > C was associated with MOT (p < 0.05), VCL (p < 0.01), LIN (p < 0.01) and ALH (p < 0.05) in Duroc population. Therefore, we suggest that the intron region of the porcine PLCz gene may be used as a molecular marker for Duroc boar semen quality, although its functional effect was not defined yet. Whether the association is due to the candidate gene or not require further verification. Thus, it will be of interest to continue association studies in the regions surrounding those genes.