• Title/Summary/Keyword: Parameter Map

Search Result 264, Processing Time 0.028 seconds

Improved Global-Soft Decision Incorporating Second-Order Conditional MAP for Speech Enhancement (음성향상을 위한 2차 조건 사후 최대 확률기법 기반 Global Soft Decision)

  • Kum, Jong-Mo;Chang, Joon-Hyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6C
    • /
    • pp.588-592
    • /
    • 2009
  • In this paper, we propose a novel method to improve the performance of the global soft decision which is based on the second-order conditional maximum a posteriori (CMAP). Conventional global soft decision scheme has an disadvantage in that the speech absence probability adjusted by a fixed-parameter was sensitive to the various noise environments. In proposed approach using the second-order CMAP, speech absence probability value is more flexible which exploit not only the current observation but also the speech activity decisions in the previous two frames. Experimental results show that the proposed improved global soft decision method based on second-order conditional MAP yields better results compared to the conventional global soft decision technique with the performance criteria of the ITU-T P. 862 perceptual evaluation of speech quality (PESQ).

Relative Localization for Mobile Robot using 3D Reconstruction of Scale-Invariant Features (스케일불변 특징의 삼차원 재구성을 통한 이동 로봇의 상대위치추정)

  • Kil, Se-Kee;Lee, Jong-Shill;Ryu, Je-Goon;Lee, Eung-Hyuk;Hong, Seung-Hong;Shen, Dong-Fan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.173-180
    • /
    • 2006
  • A key component of autonomous navigation of intelligent home robot is localization and map building with recognized features from the environment. To validate this, accurate measurement of relative location between robot and features is essential. In this paper, we proposed relative localization algorithm based on 3D reconstruction of scale invariant features of two images which are captured from two parallel cameras. We captured two images from parallel cameras which are attached in front of robot and detect scale invariant features in each image using SIFT(scale invariant feature transform). Then, we performed matching for the two image's feature points and got the relative location using 3D reconstruction for the matched points. Stereo camera needs high precision of two camera's extrinsic and matching pixels in two camera image. Because we used two cameras which are different from stereo camera and scale invariant feature point and it's easy to setup the extrinsic parameter. Furthermore, 3D reconstruction does not need any other sensor. And the results can be simultaneously used by obstacle avoidance, map building and localization. We set 20cm the distance between two camera and capture the 3frames per second. The experimental results show :t6cm maximum error in the range of less than 2m and ${\pm}15cm$ maximum error in the range of between 2m and 4m.

An Analysis of the Sensitivity of Input Parameters for the Seismic Hazard Analysis in the Korean Peninsula (한반도 지진위험도 산출을 위한 입력 파라메타의 민감도 분석)

  • Kim, Min-Ju;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.36 no.4
    • /
    • pp.351-359
    • /
    • 2015
  • This study is to analyze the sensitivity for the parameters (a and b values, $M_{max}$, attenuation formula, and seismo-tectonic model) which are essential for the seismic hazard map. The values of each parameter were suggested by 10 members of the expert group. The results show that PGA increases as a value and $M_{max}$ become larger and as b value smaller. Big impact on the seismic hazard is observed for attenuation formula, a and b values although there is little impact on $M_{max}$ and seismo-tectonic model. These parameters with big impact require careful consideration for obtaining adequate values that well reflects the seismic characteristics of the Korean peninsula.

On the Design of ToA Based RSS Compensation Scheme for Distance Measurement in WSNs (ToA 기반 RSS 보정 센서노드 거리 측정 방법)

  • Han, Hyeun-Jin;Kwon, Tae-Wook
    • The KIPS Transactions:PartC
    • /
    • v.16C no.5
    • /
    • pp.615-620
    • /
    • 2009
  • Nowadays, wireless infrastructures such as sensor networks are widely used in many different areas. In case of sensor networks, the wirelessly connected sensors can execute different kind of tasks in a diversity of environments, and one of the most important parameter for a successful execution of such tasks is the location information of each node. As to localization problems in WSNs, there are ToA (Timer of Arrival), RSS (Received Signal Strength), AoA (Angle of Arrival), etc. In this paper, we propose a modification of existing ToA and RSS based methods, adding a weighted average scheme to measure more precisely the distance between nodes. The comparison experiments with the traditional ToA method show that the average error value of proposed method is reduced by 0.1 cm in indoor environment ($5m{\times}7m$) and 0.6cm in outdoor environment ($10{\times}10m$).

A Study on the Prediction of Groundwater Contamination using GIS (GIS를 이용한 지하수오염 예측에 관한 연구)

  • Jo, Si-Beom;Shon, Ho-Woong;Lee, Kang-Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.17-28
    • /
    • 2004
  • This study has tried to develop the modified DRASTIC Model by supplying the parameters, such as structural lineament density and land-use, into conventional DRASTIC model, and to predict the potential of groundwater contamination using GIS in Hwanam 2 District, Gyeonggi Province, Korea. Since the aquifers in Korea is generally through the joints of rock-mass in hydrogeological environment, lineament density affects to the behavior of groundwater and contaminated plumes directly, and land-use reflect the effect of point or non-point source of contamination indirectly. For the statistical analysis, lattice-layers of each parameter were generated, and then level of confidence was assessed by analyzing each correlation coefficient. Groundwater contamination potential map was achieved as a final result by comparing modified DRASTIC potential and the amount of pollutant load logically. The result suggest the predictability of contamination potential in a specified area in the respects of hydrogeological aspect and water quality.

  • PDF

Stereok Matching based on Intensity and Features for Images with Background Removed (배경을 제외한 영상에서 명암과 특징을 기반으로하는 스테레오 정합)

  • Choe, Tae-Eun;Gwon, Hyeok-Min;Park, Jong-Seung;Han, Jun-Hui
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.12
    • /
    • pp.1482-1496
    • /
    • 1999
  • 기존의 스테레오 정합 알고리즘은 크게 명암기반기법과 특징기반기법의 두 가지로 나눌 수 있다. 그리고, 각 기법은 그들 나름대로의 장단점을 갖는다. 본 논문은 이 두 기법을 결합하는 새로운 알고리즘을 제안한다. 본 논문에서는 물체모델링을 목적으로 하기 때문에 배경을 제거하여 정합하는 방법을 사용한다. 이를 위해, 정합요소들과 정합유사함수가 정의되고, 정합유사함수는 두 기법사이의 장단점을 하나의 인수에 의해 조절한다. 그 외에도 거리차 지도의 오류를 제거하는 coarse-to-fine기법, 폐색문제를 해결하는 다중윈도우 기법을 사용하였고, 물체의 표면형태를 알아내기 위해 morphological closing 연산자를 이용하여 물체와 배경을 분리하는 방법을 제안하였다. 이러한 기법들을 기반으로 하여 여러가지 영상에 대해 실험을 수행하였으며, 그 결과들은 본 논문이 제안하는 기법의 효율성을 보여준다. 정합의 결과로 만들어지는 거리차 지도는 3차원 모델링을 통해 가상공간상에서 보여지도록 하였다.Abstract Classical stereo matching algorithms can be classified into two major areas; intensity-based and feature-based stereo matching. Each technique has advantages and disadvantages. This paper proposes a new algorithm which merges two main matching techniques. Since the goal of our stereo algorithm is in object modeling, we use images for which background is removed. Primitives and a similarity function are defined. The matching similarity function selectively controls the advantages and disadvantages of intensity-based and feature-based matching by a parameter.As an additional matching strategy, a coarse-to-fine method is used to remove a errorneous data on the disparity map. To handle occlusions, multiple windowing method is used. For finding the surface shape of an object, we propose a method that separates an object and the background by a morphological closing operator. All processes have been implemented and tested with various image pairs. The matching results showed the effectiveness of our method. From the disparity map computed by the matching process, 3D modeling is possible. 3D modeling is manipulated by VRML(Virtual Reality Manipulation Language). The results are summarized in a virtual reality space.

A Study on the Speaker Adaptation in CDHMM (CDHMM의 화자적응에 관한 연구)

  • Kim, Gwang-Tae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.116-127
    • /
    • 2002
  • A new approach to improve the speaker adaptation algorithm by means of the variable number of observation density functions for CDHMM speech recognizer has been proposed. The proposed method uses the observation density function with more than one mixture in each state to represent speech characteristics in detail. The number of mixtures in each state is determined by the number of frames and the determinant of the variance, respectively. The each MAP Parameter is extracted in every mixture determined by these two methods. In addition, the state segmentation method requiring speaker adaptation can segment the adapting speech more Precisely by using speaker-independent model trained from sufficient database as a priori knowledge. And the state duration distribution is used lot adapting the speech duration information owing to speaker's utterance habit and speed. The recognition rate of the proposed methods are significantly higher than that of the conventional method using one mixture in each state.

Far-ultraviolet Observations of the Taurus-Perseus-Auriga Complex

  • Lim, Tae-Ho;Min, Kyoung-Wook;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.98.2-98.2
    • /
    • 2012
  • We firstly present the unified Far-UV continuum map of the Taurus-Auriga-Perseus (TPA) complex, one of the largest local associations of dark cloud located in (l, b)=([154,180], [-28, -2]), by merging both FIMS and GALEX. The FUV continuum map shows that dust extinction correlate well with the FUV around the complex. It shows strong absorption in FUV toward the dense Taurus cloud while it does not in California cloud. It turned out that it is related to the relative location of each cloud and Perseus OB2 association. We also present some results of dust scattering simulation based on Monte Carlo Radiative Transfer technique (MCRT). Through this dust scattering simulation, we have derived the scattering parameter for this region, albedo(a)=$0.42^{+0.05}{_{-0.05}}$, asymmetry factor(g)=$0.47^{+0.11}{_{-0.27}}$. The optical parameters we obtained seem reasonable compared to the theoretical model values ~0.40 and ~0.65 for the albedo and the phase function though the phase function is rather small. Using the result of simulation, we figured out the geometries of each cloud in the complex region, especially their distances and thicknesses. Our predictions from the results are in good agreement with the previous studies related to the TPA complex. For example, the Taurus cloud is within ~200pc from the Sun and the Perseus seems to be multi-layered, at least two. The California cloud is more distant than the other cloud on average at ~350 pc and Auriga cloud seems to be between the Taurus cloud and the eastern end of the California cloud. We figured out that across the TPA complex region, there might be some correlation between the LSR velocity and the distance to each cloud in the complex.

  • PDF

Classification of Wind Sector in Pohang Region Using Similarity of Time-Series Wind Vectors (시계열 풍속벡터의 유사성을 이용한 포항지역 바람권역 분류)

  • Kim, Hyun-Goo;Kim, Jinsol;Kang, Yong-Heack;Park, Hyeong-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • The local wind systems in the Pohang region were categorized into wind sectors. Still, thorough knowledge of wind resource assessment, wind environment analysis, and atmospheric environmental impact assessment was required since the region has outstanding wind resources, it is located on the path of typhoon, and it has large-scale atmospheric pollution sources. To overcome the resolution limitation of meteorological dataset and problems of categorization criteria of the preceding studies, the high-resolution wind resource map of the Korea Institute of Energy Research was used as time-series meteorological data; the 2-step method of determining the clustering coefficient through hierarchical clustering analysis and subsequently categorizing the wind sectors through non-hierarchical K-means clustering analysis was adopted. The similarity of normalized time-series wind vector was proposed as the Euclidean distance. The meteor-statistical characteristics of the mean vector wind distribution and meteorological variables of each wind sector were compared. The comparison confirmed significant differences among wind sectors according to the terrain elevation, mean wind speed, Weibull shape parameter, etc.

Adaptive Multi-class Segmentation Model of Aggregate Image Based on Improved Sparrow Search Algorithm

  • Mengfei Wang;Weixing Wang;Sheng Feng;Limin Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.391-411
    • /
    • 2023
  • Aggregates play the skeleton and supporting role in the construction field, high-precision measurement and high-efficiency analysis of aggregates are frequently employed to evaluate the project quality. Aiming at the unbalanced operation time and segmentation accuracy for multi-class segmentation algorithms of aggregate images, a Chaotic Sparrow Search Algorithm (CSSA) is put forward to optimize it. In this algorithm, the chaotic map is combined with the sinusoidal dynamic weight and the elite mutation strategies; and it is firstly proposed to promote the SSA's optimization accuracy and stability without reducing the SSA's speed. The CSSA is utilized to optimize the popular multi-class segmentation algorithm-Multiple Entropy Thresholding (MET). By taking three METs as objective functions, i.e., Kapur Entropy, Minimum-cross Entropy and Renyi Entropy, the CSSA is implemented to quickly and automatically calculate the extreme value of the function and get the corresponding correct thresholds. The image adaptive multi-class segmentation model is called CSSA-MET. In order to comprehensively evaluate it, a new parameter I based on the segmentation accuracy and processing speed is constructed. The results reveal that the CSSA outperforms the other seven methods of optimization performance, as well as the quality evaluation of aggregate images segmented by the CSSA-MET, and the speed and accuracy are balanced. In particular, the highest I value can be obtained when the CSSA is applied to optimize the Renyi Entropy, which indicates that this combination is more suitable for segmenting the aggregate images.