• Title/Summary/Keyword: Parameter Localization

Search Result 91, Processing Time 0.029 seconds

Wrinkle Defect of Low Carbon Steel in Wire Rod Rolling (저탄소강 선재 압연의 주름성 결함)

  • Kim H. Y.;Kwon H. C.;Byon S. M.;Park H. D.;Im Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.307-316
    • /
    • 2004
  • This study examined the cause of the wrinkle defect which is frequently encountered in wire rod rolling of low carbon steel$(C0.08\~0.13wt.\%)$. Even a small defect on the surface of rolled bars can easily develop into fatal cracks during cold heading process of low carbon steel, and it is therefore necessary to minimize inherent defects on the surface of hot rolled bars. Hot rolling process of low carbon steel was analyzed to identify the cause of the wrinkle defect in conjunction with FE analysis. The integrated analysis revealed that the wrinkle defect initiated in the first stage of rolling, and it was at the billet edge where severe deformation and drastic temperature drop were present. To elucidate the micro-mechanical mechanism of the wrinkle defect, hot compression tests were carried out at various temperatures and strain rates using Gleeble-3800. The surface profile of the each other compressed specimens was compared, and rough surface lines were observed at relatively low temperatures. Those surface defects can develop into wrinkles during multi-pass rolling. To control the wrinkle defect in rolling, it is necessary to design an adequate caliber which can minimize the loss of ductility, and thereby prevent flow localization. To use the result of this study fur other steels, the quantitative measure of the wrinkle defect and flow localization parameter should be proposed.

  • PDF

Calculation of Detector Positions for a Source Localizing Radiation Portal Monitor System Using a Modified Iterative Genetic Algorithm

  • Jeon, Byoungil;Kim, Jongyul;Lim, Kiseo;Choi, Younghyun;Moon, Myungkook
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.4
    • /
    • pp.212-221
    • /
    • 2017
  • Background: This study aims to calculate detector positions as a design of a radioactive source localizing radiation portal monitor (RPM) system using an improved genetic algorithm. Materials and Methods: To calculate of detector positions for a source localizing RPM system optimization problem is defined. To solve the problem, a modified iterative genetic algorithm (MIGA) is developed. In general, a genetic algorithm (GA) finds a globally optimal solution with a high probability, but it is not perfect at all times. To increase the probability to find globally optimal solution rather, a MIGA is designed by supplementing the iteration, competition, and verification with GA. For an optimization problem that is defined to find detector positions that maximizes differences of detector signals, a localization method is derived by modifying the inverse radiation transport model, and realistic parameter information is suggested. Results and Discussion: To compare the MIGA and GA, both algorithms are implemented in a MATLAB environment. The performance of the GA and MIGA and that of the procedures supplemented in the MIGA are analyzed by computer simulations. The results show that the iteration, competition, and verification procedures help to search for globally optimal solutions. Further, the MIGA is more robust against falling into local minima and finds a more reliably optimal result than the GA. Conclusion: The positions of the detectors on an RPM for radioactive source localization are optimized using the MIGA. To increase the contrast of the measurements from each detector, a relationship between the source and the detectors is derived by modifying the inverse transport model. Realistic parameters are utilized for accurate simulations. Furthermore, the MIGA is developed to achieve a reliable solution. By utilizing results of this study, an RPM for radioactive source localization has been designed and will be fabricated soon.

A Study on Underwater Source Localization Using the Wideband Interference Pattern Matching (수중에서 광대역 간섭 패턴 정합을 이용한 음원의 위치 추정 연구)

  • Chun, Seung-Yong;Kim, Se-Young;Kim, Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.8
    • /
    • pp.415-425
    • /
    • 2007
  • This paper proposes a method of underwater source localization using the wideband interference patterns matching. By matching two interference patterns in the spectrogram, it is estimated a ratio of the range from source to sensor5, and then this ratio is applied to the Apollonius circle. The Apollonius circle is defined as the locus of all points whose distances from two fixed points are in a constant value so that it is possible to represent the locus of potential source location. The Apollonius circle alone, however still keeps the ambiguity against the correct source location. Therefore another equation is necessary to estimate the unique locus of the source location. By estimating time differences of signal arrivals between source and sensors, the hyperbola equation is used to get the cross point of the two equations, where the point being assumed to be the source position. Simulations are performed to get performances of the proposed algorithm. Also, comparisons with real sea experiment data are made to prove applicability of the algorithm in real environment. The results show that the proposed algorithm successfully estimates the source position within an error bound of 10%.

High Pressure Synthesis and Physical Properties of the Solid Solution, $SrLaAl_{1-x}Ni_xO_4(0

  • 변송호
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1084-1088
    • /
    • 1995
  • A complete solid solution (SrLaAl1-xNixO4) between insulating SrLaAlO4 and metallic SrLaNi(Ⅲ)O4 oxides were prepared under high oxygen pressure (1.5 kbar, 800 ℃). They have tetragonal K2NiF4-type structure in all the solid solution range. Compared with lattice parameters of the same solid solution prepared under normal condition (1 bar, 1200 ℃), large decrease in the c-parameter was induced by high pressure treatment while no noticeable variation of the a-parameter was observed. Although marked changes of structural parameters, magnetic susceptibilities, and electron paramagnetic resonance spectra were consistently occurred before and after x=0.5, overall behaviors were essentially the same with those of solid solution prepared under normal condition. Such a phenomenon is explained by assuming the formation of partially filled narrow σ*x2-y2 band for x>0.5. Lattice contraction along the c-axis by high pressure treatment seems not to broaden this band. Particularly, the continuous absorption characteristic of a high free carrier concentration for x>0.5 and the absence of Ni-O in-plane stretching mode in the infrared absorption spectra supports this picture. However, the conductivities increasing with temperature for all solid solution suggest that some localization character, of probably Anderson type, remains for x>0.5.

A Study on Wavelet Application for Signal Analysis (신호 해석을 위한 웨이브렛 응용에 관한 연구)

  • Bae, Sang-Bum;Ryu, Ji-Goo;Kim, Nam-Ho
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.302-305
    • /
    • 2005
  • Recently, many methods to analyze signal have been proposed and representative methods are the Fourier transform and wavelet transform. In these methods, the Fourier transform represents signal with combination cosine and sine at all locations in the frequency domain. However, it doesn't provide time information that particular frequency occurs in signal and denpends on only the global feature of the signal. So, to improve these points the wavelet transform which is capable of multiresolution analysis has been applied to many fields such as speech processing, image processing and computer vision. And the wavelet transform, which uses changing window according to scale parameter, presents time-frequency localization. In this paper, we proposed a new approach using a wavelet of cosine and sine type and analyzed features of signal in a limited point of frequency-time plane.

  • PDF

Artificial reverberation algorithm to control distance of phantom sound source for surround audio system (서라운드 오디오 시스템을 위한 가상음원의 거리를 조절할 수 있는 인공잔향기)

  • Shim, Hwan;Seo, Jeong-Hun;Sung, Koeng-Mo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.447-450
    • /
    • 2005
  • Multi-channel artificial reverberation algorithm to control perceived direction and distance is described in this paper. In conventional algorithms using IIR filters, reverberation time is the only parameter to be controlled. Moreover, since the convolution-based conventional algorithms apply only same impulse responses, but not considering sound localization, it was not realistic enough. The new algorithm proposed in this paper utilizes early reflections segmented according to the azimuth from which direct sound comes and controls perceived direction by panning the direct sound, and controls perceived distance by adjusting Energy Decay Curve (EDC) of reverberation and gain of the direct sound. In addition, the algorithm enhances Listener Envelopment(LEV) to make late reverberation incoherent among channels.

  • PDF

Two Back Stress Hardening Models in Rate Independent Rigid Plasticity (변형률 독립 강소성 구성 방정식에서의 이중 후방 응력 경화 모델)

  • Yun S. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.327-337
    • /
    • 2005
  • In the present work, the two back stress kinematic hardening models are proposed by combining Armstrong-Frederick, Phillips and Ziegler's hardening rules. Simple combination of hardening rules using simple rule of mixtures results in various evolutions of the kinematic hardening parameter. Using the combined hardening models the ultimate back stress fur the present models is also derived. The stress rate is co-rotated with respect to the spin of substructure due to the assumption of kinematic hardening rule in finite deformation regime. The work piece under consideration is assumed to consist of the elastic and the rigid plastic deformation zone. Then, the J2 deformation theory is facilitated to characterize the plastic deformation behavior under various loading conditions. The plastic deformation localization behaviors strongly depend on the constitutive description namely back stress evolution and its hardening parameters. Then, the analysis for Swift's effects under the fixed boundaries in axial directions is carried out using simple shear deformation.

WEAK SOLUTIONS AND ENERGY ESTIMATES FOR A DEGENERATE NONLOCAL PROBLEM INVOLVING SUB-LINEAR NONLINEARITIES

  • Chu, Jifeng;Heidarkhani, Shapour;Kou, Kit Ian;Salari, Amjad
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1573-1594
    • /
    • 2017
  • This paper deals with the existence and energy estimates of solutions for a class of degenerate nonlocal problems involving sub-linear nonlinearities, while the nonlinear part of the problem admits some hypotheses on the behavior at origin or perturbation property. In particular, for a precise localization of the parameter, the existence of a non-zero solution is established requiring the sublinearity of nonlinear part at origin and infinity. We also consider the existence of solutions for our problem under algebraic conditions with the classical Ambrosetti-Rabinowitz. In what follows, by combining two algebraic conditions on the nonlinear term which guarantees the existence of two solutions as well as applying the mountain pass theorem given by Pucci and Serrin, we establish the existence of the third solution for our problem. Moreover, concrete examples of applications are provided.

Efficient distributed estimation based on non-regular quantized data

  • Kim, Yoon Hak
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.710-715
    • /
    • 2019
  • We consider parameter estimation in distributed systems in which measurements at local nodes are quantized in a non-regular manner, where multiple codewords are mapped into a single local measurement. For the system with non-regular quantization, to ensure a perfect independent encoding at local nodes, a local measurement can be encoded into a set of a great number of codewords which are transmitted to a fusion node where estimation is conducted with enormous computational cost due to the large cardinality of the sets. In this paper, we propose an efficient estimation technique that can handle the non-regular quantized data by efficiently finding the feasible combination of codewords without searching all of the possible combinations. We conduct experiments to show that the proposed estimation performs well with respect to previous novel techniques with a reasonable complexity.

A Study on Frequency-Time Plane Analysis of Wavelet (웨이브렛의 주파수-시간 평면 해석에 관한 연구)

  • Bae, Sang-Bum;Ryu, Ji-Goo;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.451-454
    • /
    • 2005
  • Recently, many methods to analyze signal have been proposed and representative methods are the Fourier transform and wavelet transform. In these methods, the Fourier transform represents signal with combination cosine and sine at all locations in the frequency domain. However, it doesn't provide time information that particular frequency occurs in signal and depends on only the global feature of the signal. So, to improve these points the wavelet transform which is capable of multiresolution analysis has been applied to many fields such as speech processing, image processing and computer vision. And the wavelet transform, which uses changing window according to scale parameter, presents time-frequency localization. In this paper, we proposed a new approach using a wavelet of cosine and sine type and analyzed features of signal in a limited point of frequency-time plane.

  • PDF