• Title/Summary/Keyword: Paramagnetic

Search Result 360, Processing Time 0.022 seconds

Nondestructive Evaluation of 2-Dimensional Surface Crack in Ferromagnetic Metal and Paramagnetic Metal by ICFPD Technique (집중유도형 교류전위차법에 의한 강자성체 및 상자성체의 2차원 표면결함의 비파괴평가)

  • 김훈;장자철웅;정세희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1202-1210
    • /
    • 1995
  • Aiming at nondestructive evaluation of defect with high accuracy and resolution, ICFPD(Induced Current Focusing Potential Drop) technique was newly developed. This technique can be applied for locating and sizing of defects in components with not only simple shape such as plain surface but also more complex shape and geometry such as curved surface and dissimilar joing. This paper describes the principle of ICFPD technique and also the results of 2-dimensional surface crack in ferromagnetic metal(A508 Cl. III steel) and paramagnetic metal (pure aluminum and stainless 304 steel) measured by this technique. Results are that surface defects in each specimen are detected with the difference of potential drop, and potential drops are distributed a similar shape for each metal and each depth. The normalized potential drop ( $V_{\delta}$2/$^{t}$ / $V_{{\delta} 2}$$^{-1}$) max. in the vicinity of defect is varied with the depth of defect. Therefore, ICFPD technique can be used for the evaluation of defect not only in ferromagnetic metal but also in paramagnetic steel..

Dosimetry Application of Irradiated D-fructose using the Electron Paramagnetic Resonance

  • Son, Phil Kook;Choi, Suk-Won;Kim, Sung Soo;Gwag, Jin Seog
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.271-274
    • /
    • 2012
  • We examine dosimetry application of irradiated D-fructose materials using electron paramagnetic resonance (EPR). Consequently, we consider that fructose is one of best dosimetry materials. We found that fructose is one of best candidates for dosimetry due to high linearity tilt of EPR signal intensity as a function of dose, irrelevant to photon energy, constant fading value. Also, our results show that fructose materials can be applied as a radiation detector to very weak radiation doses of 0.001 Gray by using EPR at a low temperature (T = 220 K).

Thermal Properties of Mn-doped LiNbO3 Crystals from Magneto-Optical Transitions

  • Park, Jung-Il
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.255-260
    • /
    • 2012
  • In this study, we determine that the electron paramagnetic resonance line-width (EPRLW) is axially symmetric about the c-axis and analyze the spin Hamiltonian with an isotopic g-factor of 1.9920 at a frequency of 9.5 GHz. It should be noted that the electron paramagnetic resonance signals are Lorentzian. Our findings show that the EPRLW decreases exponentially with an increase in the temperature; i.e., its temperature dependence in the range 300-400 K obeys Arrhenius behavior, this kind of temperature dependence indicates an off-center a motional narrowing of the spectrum when $Mn^{2+}$ impurity ions substitute for $Nb^{5+}$ ions. The specific heats follow a linear dependence suggesting a simple Debye $T^3$ behavior.

A Study of Electron Paramagnetic Resonance of Sugar Irradiated X-ray (X-선에 조사된 설탕의 전자 상자성 공명 연구)

  • Ok, Chi-Il;Son, Phil-Kook;Heo, Kyoung-Chan;Shon, Jong-Gi;Lee, In;Kim, Jang-Whan
    • Journal of radiological science and technology
    • /
    • v.23 no.2
    • /
    • pp.39-42
    • /
    • 2000
  • When ordinary sugar is exposed to ionizing radiation, a number of free radical are created in sugar, and Electron Paramagnetic Resonance (EPR) signal appears from the sugar because of the paramagnetic property of free radical. In this paper, EPR signal intensity has been measured in x-ray irradiated sugar for various absorbed doses, irradiated dose up to 50 Gy. The EPR intensity signals are increased as the x-ray irradiation increases. Also, the fading value decreased to about 3% in 30day after the irradiation. Therefore, the sugar is a useful material for emergency dosimeter as the free radical dosimetry with the EPR equipment.

  • PDF

Fluorescence Intensity Changes for Anthrylazacrown Ethers by Paramagnetic Metal Cations

  • 장정호;김해중;박중희;신영국;정용석
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.7
    • /
    • pp.796-800
    • /
    • 1999
  • Three anthrylazacrown ethers in which the anthracene fluorophore π system is separated from the electron donor atoms by one methylene group were synthesized, and their photophysical study was accomplished. These fluorescent compounds showed a maximum fluorescence intensity at pH=5 in aqueous solutions and a decrease in fluorescence intensity upon binding of paramagnetic metal cations (Mn 2+ (d 5 ), Co 2+ (d 7 ), Cu 2+ (d 9 )). The decrease in fluorescence intensity may be attributed to the paramagnetic effect of metal cations to deactivate the excited state by the nonradiative quenching process. The benzylic nitrogen was found to play an important role in changing fluorescence intensity. From the observed linear Stern-Volmer plot and the fluorescence lifetime independence of the presence of metal ions, it was inferred that the chelation enhanced fluorescence quenching (CHEQ) mechanism in the system is a ground state static quenching process. Enhanced fluorescence was also observed when an excess Na + ion was added to the quenched aqueous solution, and it was attributed to cation displacement of a complexed fluorescence quencher.

The Low-Radiation Dosimetry Application of "tris" Lyoluminescence using Electron Paramagnetic Resonance at Low Temperature

  • Son, Phil-Kook;Choi, Suk-Won;Kim, Sung-Soo;Gwag, Jin-Seog
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.172-175
    • /
    • 2012
  • We present a method for detecting very weak radiation by analyzing the inner structure of irradiated tris (lyoluminescence) materials using electron paramagnetic resonance (EPR) at low temperature. Organic materials have been looked into for use in emergency dosimetry of inhabitants around radiation accidents. However, this technology has never been applied to imperceptible radiation doses (< 0.5 Gy) because there is no proper method for detecting the change of inner structure of the subject bombed by very weak radiation at room temperature. Our results show that tris materials can be applied as a radiation detectors of very small radiation doses below 0.05 Gray, if EPR is used at low temperature (130 K ${\leq}$ T ${\leq}$ 270 K). The EPR signal intensity from the irradiated-tris sample had barely faded at all after 1 year.

Temperature Dependence of Mn2+ Paramagnetic Ion in a Stoichiometric LiNbO3 Single Crystal

  • Yeom, Tae Ho;Lee, Soo Hyung
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.221-224
    • /
    • 2013
  • Electron paramagnetic resonance (EPR) spectra of $Mn^{2+}$ impurity ion in Stoichiometric $LiNbO_3$ single crystal (SLN) was investigated with an X-band EPR spectrometer in the temperature range of 3 K~296 K. The intensity of EPR spectrum of $Mn^{2+}$ ion was increased to 20 K and decreased again below 20 K as the temperature decreases. The zero-field splitting parameter D decreased as the temperature increases. It was suggested that $Mn^{2+}$ ion substitute for $Nb^{5+}$ ion instead of $Li^+$ ion. No changes for hyperfine interaction of $Mn^{2+}$ ion was obtained in the temperature range of 3 K~296 K.

Electron Paramagnetic Resonance Study of Bis(N-methyl-2-amino-1-cyclopentenedithiocarboxylato)Copper (II)

  • Woo-Seong Kim;Young-Inn Kim;Sung-Nak Choi
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.85-88
    • /
    • 1990
  • The electron paramagnetic resonance (EPR) spectrum of the copper (II) complex with the 2-methylamino-1-cyclo-pentene-1-dithiocarboxylate (acdc) anion, $Cu(N-CH_3acdc)_2$ has been studied in the diamagnetic host lattices afforded by the corresponding divalent nickel, zinc, cadmium and mercury complexes. EPR parameters of the complex support the exclusive use of sulfur atoms by the ligand in metal binding. A combination of host lattice structure and covalency effects can be account for the observed spin-Hamiltonian parameters.

Nuclear Magnetic Relaxation in Anisotropic Heisenberg Antiferromagnet $MnCl_{2}.4H_{2}O$ (Heisenberg 반강자성체 $MnCl_{2}.4H_{2}O$의 핵자기완화 연구)

  • Chang Hoon Lee;Cheol Eui Lee
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.54-57
    • /
    • 1995
  • We have studied the room temperature $^{1}H$ nuclear magnetic relaxation in anisotropic antiferromagnet $MnCl_{2}.4H_{2}O$ using a wide range of $^{1}H$ NMR (nuclear magnetic resonance) field. Being a system of dense paramagnetic $Mn^{++}$ ions at room temperature, $MnCl_{2}.4H_{2}O$ shows some features that can be expected from dilute paramagnetic systems, as well as some results that drastically deviate from the dilute paramagnetic approximations. Besides, $^{1}H$ nuclei exhibit an anomalous deviation in the spin-lattice relaxation time ($T_{1}$) around the field of 0.7 T.

  • PDF