• Title/Summary/Keyword: Paralytic shellfish toxins (PSTs)

Search Result 4, Processing Time 0.027 seconds

Validation of LC-MS/MS Method for Analysis of Paralytic Shellfish Toxins in Shellfish and Tunicates (LC-MS/MS를 이용한 패류 및 피낭류 중 마비성 패류독소 분석법의 유효성 검증)

  • Cho, Sung Rae;Kim, Dong Wook;Yu, Hean Jae;Cho, Seong Hae;Ryu, Ara;Lee, Ka Jeong;Mok, Jong Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.2
    • /
    • pp.174-180
    • /
    • 2020
  • The mouse bioassay has been used widely for the monitoring of paralytic shellfish toxins (PSTs) in many countries. However, this method shows low sensitivity and high limit of detection (LOD), as well as it cannot confirm toxic profiles. Recently, LC-MS/MS method was studied for the quantitative of PSTs, however, the method has any problems with unstable retention times by ionization suppression caused by high salt concentration in shellfish extracts. To establish an alternative method for PSTs analysis, we tried to original LC-MS/MS methods adding desalting operation using amorphous graphitized polymer carbon solid-phase extraction cartridges. The method validation was conducted to determine linearity, limit of detection, limit of quantification (LOQ), accuracy, and precision in quantifying PSTs. The correlation coefficients for all tested PSTs maintained over 0.999. The LODs and LOQs for all PSTs were about 0.19-1.05 ㎍/kg and 0.58-3.18 ㎍/kg, respectively. The accuracies for PSTs were 95.4-107.7% for saxitoxin group, 97.1-100.9% for gonyautoxin group, 99.0-100.8% for N-sulfocarbamoyl toxin group, and 96.8-104.6% for decarbamoyl toxin group. These results indicate that the modified LC-MS/MS method was appropriate for analyzing the PSTs in shellfish and tunicates.

Comparison of Analytical Methods for the Detection of Paralytic Shellfish Toxins (PSTs) (마비성패류독소 검출을 위한 분석법 비교)

  • Lee, Ka Jeong;Kwon, Soon Jae;Jung, Yeoun Joong;Son, Kwang Tae;Ha, Kwang Soo;Mok, Jong Soo;Kim, Ji Hoe
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.6
    • /
    • pp.669-674
    • /
    • 2017
  • Paralytic shellfish toxins (PSTs) are produced by marine dinoflagellate phytoplankton Alexandrium spp. and Gymnodinium spp. These toxins accumulate in filter feeding organisms such as bivalves and the ingestion of contaminated shellfish can cause illness in humans. The mouse bioassay (MBA) has been the preferred PST testing method worldwide for more than 50 years. However, this assay has several disadvantages, such as detection limits, non-toxic-profiles, and the ethical issues of using animals. The aim of this study was to establish an alternative to the MBA method for testing for PSTs. We optimized the analysis conditions of a post-column oxidation-high performance liquid chromatography (PCOX-HPLC) method and the Scotia Rapid Test Kit, and then compared the accuracy of these methods to the MBA method. The results demonstrated a strong correlation between the PCOX-HPLC method and the MBA, although the PCOX-HPLC method required expensive equipment and standard material, and was time consuming. The Scotia Rapid Test Kit promises to be a useful tool, as it provided rapid and qualitative results, although the method sometimes gave a false positive result that could not be explained by toxin profiles.

Paralytic shellfish toxins (PSTs) and tetrodotoxin (TTX) of Korean pufferfish

  • Lee, Ka Jeong;Ha, Kwang Soo;Jung, Yeoun Joong;Mok, Jong Soo;Son, Kwang Tae;Lee, Hee Chung;Kim, Ji Hoe
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.11
    • /
    • pp.360-369
    • /
    • 2021
  • Paralytic shellfish toxins (PSTs) and tetrodotoxin (TTX) are neurotoxins that display pharmacological activity that is similar to that of specific sodium channel blockers; they are the principle toxins involved in shellfish and puffer fish poisoning. In Korea, puffer fish is a very popular seafood, and several cases of accidental poisoning by TTX have been reported. Therefore, it is necessary to determine whether puffer fish poisoning incidents are caused by PSTs or by TTX. In this study, we used mouse bioassay (MBA) and liquid chromatograph-tandem mass spectrometry (LC-MS/MS) to determine the presence of PSTs and TTX in puffer fish from an area near Mireuk-do, Tong-Yeong on the southern coast of Korea from January through March, 2014. The toxicity of PSTs and TTX extracts prepared from three organs of each specimen was analyzed by MBA. Most of the extracts killed mice with typical signs of TTX and PSTs. The LC-MS/MS analysis of seven specimens of Takifugu pardalis and Takifugu niphobles, each divided into muscles, intestines, and liver, were examined for TTX. In T. pardalis, the TTX levels were within the range of 1.3-1.6 ㎍/g in the muscles, 18.8-49.8 ㎍/g in the intestines, and 23.3-96.8 ㎍/g in the liver. In T. niphobles, the TTX levels were within the range of 2.0-4.5 ㎍/g in the muscles, 23.9-71.5 ㎍/g in the intestines, and 28.1-114.8 ㎍/g in the liver. Additionally, the toxicity profile of the detected PSTs revealed that dcGTX3 was the major component in T. pardalis and T. niphobles. When PSTs were calculated as saxitoxin equivalents the levels were all less than 0.5 ㎍/g, which is below the permitted maximum standard of 0.8 ㎍/g. These findings indicate that the toxicity of T. pardalis and T. niphobles from the southern coast of Korea is due mainly to TTX and that PSTs do not exert an effect.

Effects of Temperature and Salinity on the Growth and Paralytic Shellfish Toxin (PST) Production by Toxic Dinoflagellate Alexandrium pacificum (유독 와편모조류 Alexandrium pacificum의 생장과 마비성 패독 생산에 미치는 수온과 염분의 영향)

  • Li, PeiJin;Oh, Seok Jin;Kim, Seok-Yun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.866-873
    • /
    • 2022
  • Growth rate and production of the paralytic shellfish poisoning toxin (PST) of a toxic dinoflagellate Alexandrium pacificum (LIMS-PS-2611) isolated from the southern sea of Korea, were examined under various temperatures and salinity conditions. The maximum growth rate (0.28 day-1) was observed under 25℃ and 30 psu. Optimal growth (≥ 70% of maximum growth rate) was obtained between 20~25℃ and 25~35 psu. Among the PSTs of A. pacificum, the principal toxins were C1+2 and GTX5 in N-sulfocarbamoyl toxin group, and minor components were characterized as neoSTXs in the carbamate toxin group. Maximum toxin content was observed under 20℃ and 30 psu, and the toxin content increased with the increase of salinity. Low toxin contents were measured under the temperature and salinity conditions of the maximum growth rate. Therefore, the PSP of bivalve, which occurs at a temperature range of 20-25℃ in June, might have been derived from A. pacificum.