• Title/Summary/Keyword: Parallel reservoir system

Search Result 18, Processing Time 0.028 seconds

The Monthly Water Supply Reliability Indexes in the Parallel Reservoir System

  • Park, Ki-Bum;Kim, Sung-Won;Lee, Yeong-Hwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1612-1615
    • /
    • 2009
  • Water supply reliability indexes (WSRI) is estimated for assessment of water supply capacity in the downstream for parallel reservoir system in Nakdong River, South Korea, using allocation rule (AR) according to the water supply capacity of each reservoir and the characteristic of parallel reservoir system. The result of the analyzing parallel reservoir system for Andong and Imha reservoir in Nakdong River does not include evidences available enough to decide whether the results of water supply analysis are excellent in the current reliability evaluation or not. However, AR (C) shows a good result in the water supply capacity for each reservoir based on the connected operation system and the total water supply capacity at the control point of downstream by the average water supply capacity and possible range of water supply capacity suggested by this study. The average water supply capacity is analyzed by the reliability of monthly average water supply capacity. Furthermore, the possible range of water supply capacity is estimated by the standard deviation when water deficit occurs. Therefore, AR (C) is useful to establish and estimate the planning water supply capacity according to the monthly water supply condition and the possible range of water supply capacity when the water supply capacity deficit occurs, South Korea.

  • PDF

The Capability Analysis of Water Supply for the Parallel Reservoir System by Allocation Rules (저수량 배분규칙을 적용한 병렬저수지 용수공급능력 해석)

  • Park, Ki-Bum;Jee, Hong-Kee;Lee, Soon-Tak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.215-224
    • /
    • 2007
  • The purpose of this study was to estimates water supply reliability indices of the water supply by Allocation Rules(AR) for parallel reservoirs. Rule (A) can be considered it as only current storage, Rule(B) can be considered it as current storage and inflow and Rule(C) can be considered it as current storage, inflow and water supply capacity. First, conditions of water supply are divided by Condition I for the monthly constant water supply and Condition II for the monthly varied water supply. Second, results of allocation coefficients are revealed the smallest different at Rule(C). The analysis of water supply showed that the capability of water supply is superior to the Rule(B), it is superior to the Rule(C) on the base of the balance of water supply. The reliability analysis was highly showed at the Rule(B) and Rule(C). A methodology for the analysis of water supply was developed and applied to the parallel reservoir system from this research, The operation rule for the parallel reservoir can be slightly modified and successfully applied to the different kinds of the parallel reservoir system.

Parallel Reservoir Analysis of Drought Period by Water Supply Allocation Method (공급량 배분기법을 이용한 갈수기 병렬저수지 해석)

  • Park Ki-Bum;Lee Soon-Tak
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.261-269
    • /
    • 2006
  • In this study, an optimization technique was developed from the application of allocation rule. The results obtained from the water supply analysis and reliability indices analysis of Andong dam and Imha dam which are consist of parallel reservoir system are summarized as the followings; Allocation rule(C) is effective technique at the parallel reservoir system because results of the water supply analysis, storage analysis and reliability indices analysis is calculated reasonable results. Also, reliability indices analysis results are not sufficient occurrence based reliability or quantity based reliability. Thus reliability indices analysis are need as occurrence based reliability, quantity based reliability vulnerability, resilience, average water supply deficits and average storage. And water supply condition is better varying water supply condition than constant water supply condition.

Development and application of inverse model for reservoir heterogeneity characterization using parallel genetic algorithm

  • Kwon Sun-Il;Huh Dae-Gee;Lee Won-Suk;Kim Hyun-Tae;Kim Se-Joon;Sung Won-Mo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.719-722
    • /
    • 2003
  • This paper presents the development of reservoir characterization model equipped with parallelized genetic algorithm, and its application for a heterogeneous reservoir system with integration of the well data and multi-phase production data. A parallel processing method performed by PC-cluster was applied to the developed model in order to reduce time for an inverse calculation. By utilizing the developed model, we performed the inverse calculation with the production data obtained from three layered reservoir system to estimate porosity and permeability distribution. As a result, the pressures observed at well almost identical to those calculated by the developed model. Also, it was confirmed that parallel processing could be applied for reservoir characterization study efficiently.

  • PDF

A Study of Parallel Reservoir Integrated Operation considering Storage (저류량을 고려한 병렬저수지 연계운영)

  • Park, Ki-Bum;Lee, Soon-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1176-1181
    • /
    • 2006
  • The purpose of this study was to estimate water supply analysis and reliability indicators by using allocation rule(AR) about Andong Dam and Imha Dam which have parallel reservoirs system. According to the analysis results of allocation rule, for Rule(A) and Rule(B), the contribution of water supply in Andong Dam was 60% more than in Imha Dam, and for Rule(C), the contributions in Andong Dam and Imha Dam were almost equal. In Rule(C), supply is allocated by the ratio which divides the sum of storage and inflow by the mean storage according to the storage state and supply capability state of Andong Dam and Imha Dam. This Rule(C) showed good results in the water supply capability analysis and reliability analysis of parallel reservoirs. In the analysis criteria of water supply in parallel reservoirs system, monthly water change quantity showed better results than monthly constant water quantity in water supply analysis. On the basis of this study, the new technique for water supply analysis was developed to be applied to parallel reservoirs, and this operation rule will establish the efficient operation measures in the application to several kinds of parallel reservoirs system.

  • PDF

Modeling and Application of Chlorine Bulk Decay in Drinking Water Distribution System (배급수계통에서 잔류염소 감소 특성 및 적용연구)

  • Ahn, Jae-Chan;Park, Chang-Min;Koo, Ja-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.487-496
    • /
    • 2005
  • Chlorine bulk decay tests were carried out by bottle test under controlled conditions in a laboratory. Experiments were performed at different temperatures: $5^{\circ}C$, $15^{\circ}C$, $25^{\circ}C$, and the water temperatures when samples were taken from the effluent just before entering to its distribution system. 38 bulk tests were performed for water of Al (water treatment plant), 4 bulk tests for A2 (large service reservoir), and A3(pumping station). Residual chlorine concentrations in the amber bottles were measured over time till about 100 hours and bulk decay coefficients were evaluated by assuming first-order, parallel first-order, second-order. and $n^{th}-order$ reaction. The $n^{th}-order$ coefficients were obtained using Fourth-order Runge-Kutta Method. A good-fit by the average coefficient of determination ($R^2$) was first-order ($R^2=0.90$) < parallel first-order ($R^2{_{fast}}=0.92$, $R^2{_{slow}}=0.95$) < second-order ($R^2=0.95$) < $n^{th}-order$ ($R^2=0.99$). But if fast reaction of parallel first-order bulk decay were applied to the effluent of large service reservoir with ca. 20 hours of travel time and slow reaction in the water distribution system following the first 20 hours, parallel first-order bulk decay would be best and easy for application of water quality modeling technique.

Streamflow Estimation using Coupled Stochastic and Neural Networks Model in the Parallel Reservoir Groups (추계학적모형과 신경망모형을 연계한 병렬저수지군의 유입량산정)

  • Kim, Sung-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.195-209
    • /
    • 2003
  • Spatial-Stochastic Neural Networks Model(SSNNM) is used to estimate long-term streamflow in the parallel reservoir groups. SSNNM employs two kinds of backpropagation algorithms, based on LMBP and BFGS-QNBP separately. SSNNM has three layers, input, hidden, and output layer, in the structure and network configuration consists of 8-8-2 nodes one by one. Nodes in input layer are composed of streamflow, precipitation, pan evaporation, and temperature with the monthly average values collected from Andong and Imha reservoir. But some temporal differences apparently exist in their time series. For the SSNNM training procedure, the training sets in input layer are generated by the PARMA(1,1) stochastic model and they covers insufficient time series. Generated data series are used to train SSNNM and the model parameters, optimal connection weights and biases, are estimated during training procedure. They are applied to evaluate model validation using observed data sets. In this study, the new approaches give outstanding results by the comparison of statistical analysis and hydrographs in the model validation. SSNNM will help to manage and control water distribution and give basic data to develop long-term coupled operation system in parallel reservoir groups of the Upper Nakdong River.

Visualization of Interacting Parallel Supersonic Free Jets using NO-LIF

  • Niimi Tomohide;Ishida Toshihiko
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.36-43
    • /
    • 2001
  • The flow field structures of two interacting parallel supersonic free jets are studied by flow visualization using planar laser-induced fluorescence of NO seeded in nitrogen gas. The experiments are carried out for several distances between two orifice centers and for various ratios of the pressure in the reservoir to that in the expansion chamber. The flow fields are visualized mainly on the plane including two jet centerlines and its characteristic shock system, especially a cell structure formed secondly by interaction of two jets, are analyzed. The positions of the normal shock depending on the pressure ratios are also compared.

  • PDF

Development of an Ejector System for Operating of Chemical Lasers (III) - Development and Performance Validation of a Full-Scale Ejector System for High Power Chemical Lasers - (화학레이저 구동용 이젝터 시스템 개발 (III) - 고출력 화학레이저용 실물 크기의 이젝터 시스템 개발 및 성능 검증 -)

  • Kim, Se-Hoon;Jin, Jung-kun;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.9-15
    • /
    • 2005
  • From the geometric parameter study, an optimal ejector design procedure of pressure recovery system for chemical lasers was acquired. For given primary flow reservoir conditions, an up-scaled ejector was designed and manufactured. In the performance test, secondary mass flow rate of 100g/s air was entrained satisfying the design secondary pressure, $40{\sim}50torr$. Performance validation of a supersonic ejector system along with an investigation of effects of supersonic diffuser was conducted. Placement of the diffuser at the secondary inlet further reduced diffuser upstream pressure to 7torr. Lastly, the duplicate of apparatus (air 500g/s secondary mass flow rate each) was built and connected in parallel to assess proportionality behavior on a system to handle larger mass flow rate. Test and comparison of the parallel unit demonstrated the secondary mass flow rate was proportional to the number of individual units that were brought together maintaining the lasing pressure.

Operation Results of the SOFC System Using 2 Sub-Module Stacks (2 모듈 스택을 이용한 SOFC 시스템 운전결과)

  • Lee, Tae-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.405-411
    • /
    • 2010
  • A 5kW class SOFC cogeneration system consisted of a hot box part, a cold BOP (balance of plant) part, and a hot water reservoir. The hot box part contained a stack, a fuel reformer, a catalytic combustor, and heat exchangers. A cold BOP part was composed of blowers, pumps, a water trap, and system control units. A 5kW stack was designed to integrate 2 sub-modules. In this paper, the 5kW class SOFC system was operated using 2 short stacks connected in parallel to test the sub-module and the system. A short stack had 15 cells with $15{\times}15 cm^2$ area. When a natural gas was used, the total power was about 1.38 kW at 120A. Because the sub-modules were connected in parallel and current was loaded using a DC load, voltages of sub-modules were same and the currents were distributed according to the resistance of sub-modules. The voltage of the first stack was 11.46 V at 61A and the voltage of the second stack was 11.49V at 59A.