• Title/Summary/Keyword: Parallel distributed Processing

Search Result 258, Processing Time 0.029 seconds

A Study on Distributed Processing of Big Data and User Authentication for Human-friendly Robot Service on Smartphone (인간 친화적 로봇 서비스를 위한 대용량 분산 처리 기술 및 사용자 인증에 관한 연구)

  • Choi, Okkyung;Jung, Wooyeol;Lee, Bong Gyou;Moon, Seungbin
    • Journal of Internet Computing and Services
    • /
    • v.15 no.1
    • /
    • pp.55-61
    • /
    • 2014
  • Various human-friendly robot services have been developed and mobile cloud computing is a real time computing service that allows users to rent IT resources what they want over the internet and has become the new-generation computing paradigm of information society. The enterprises and nations are actively underway of the business process using mobile cloud computing and they are aware of need for implementing mobile cloud computing to their business practice, but it has some week points such as authentication services and distributed processing technologies of big data. Sometimes it is difficult to clarify the objective of cloud computing service. In this study, the vulnerability of authentication services on mobile cloud computing is analyzed and mobile cloud computing model is constructed for efficient and safe business process. We will also be able to study how to process and analyze unstructured data in parallel to this model, so that in the future, providing customized information for individuals may be possible using unstructured data.

Join Operation of Parallel Database System with Large Main Memory (대용량 메모리를 가진 병렬 데이터베이스 시스템의 조인 연산)

  • Park, Young-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.51-58
    • /
    • 2007
  • The shared-nothing multiprocessor architecture has advantages in scalability, this architecture has been adopted in many multiprocessor database system. But, if the data are not uniformly distributed across the processors, load will be unbalanced. Therefore, the whole system performance will deteriorate. This is the data skew problem, which usually occurs in processing parallel hash join. Balancing the load before performing join will resolve this problem efficiently and the whole system performance can be improved. In this paper, we will present an algorithm using merit of very large memory to reduce disk access overhead in performing load balancing and to efficiently solve the data skew problem. Also, we will present analytical model of our new algorithm and present the result of some performance study we made comparing our algorithm with the other algorithms in handling data skew.

  • PDF

Design and Implementation of Big Data Analytics Framework for Disaster Risk Assessment (빅데이터 기반 재난 재해 위험도 분석 프레임워크 설계 및 구현)

  • Chai, Su-seong;Jang, Sun Yeon;Suh, Dongjun
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.771-777
    • /
    • 2018
  • This study proposes a big data based risk analysis framework to analyze more comprehensive disaster risk and vulnerability. We introduce a distributed and parallel framework that allows large volumes of data to be processed in a short time by using open-source disaster risk assessment tool. A performance analysis of the proposed system presents that it achieves a more faster processing time than that of the existing system and it will be possible to respond promptly to precise prediction and contribute to providing guideline to disaster countermeasures. Proposed system is able to support accurate risk prediction and mitigate severe damage, therefore will be crucial to giving decision makers or experts to prepare for emergency or disaster situation, and minimizing large scale damage to a region.

Parallel Spatial Join Method Using Efficient Spatial Relation Partition In Distributed Spatial Database Systems (분산 공간 DBMS에서의 효율적인 공간 릴레이션 분할 기법을 이용한 병렬 공간 죠인 기법)

  • Ko, Ju-Il;Lee, Hwan-Jae;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.4 no.1 s.7
    • /
    • pp.39-46
    • /
    • 2002
  • In distributed spatial database systems, users nay issue a query that joins two relations stored at different sites. The sheer volume and complexity of spatial data bring out expensive CPU and I/O costs during the spatial join processing. This paper shows a new spatial join method which joins two spatial relation in a parallel way. Firstly, the initial join operation is divided into two distinct ones by partitioning one of two participating relations based on the region. This two join operations are assigned to each sites and executed simultaneously. Finally, each intermediate result sets from the two join operations are merged to an ultimate result set. This method reduces the number of spatial objects participating in the spatial operations. It also reduces the scope and the number of scanning spatial indices. And it does not materialize the temporary results by implementing the join algebra operators using the iterator. The performance test shows that this join method can lead to efficient use in terms of buffer and disk by narrowing down the joining region and decreasing the number of spatial objects.

  • PDF

THREE-DIMENSIONAL ROUND-ROBIN SCHEDULER FOR ADVANCED INPUT QUEUING SWITCHES (고속 입력큐 스위치 패브릭을 위한 3차원 라운드로빈 스케줄러)

  • Jeong, Gab-Joong;Lee, Bhum-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.373-376
    • /
    • 2003
  • This paper presents a new, three-dimensional round-robin scheduler that provides high throughput and fair across in an advanced input-queued packet switch using shared input buffers. We consider an architecture in which each input port group shares a common buffer and maintains a separate queue for each output, which is ratted the distributed common input buffer switch. In an NxN switch, our scheduler determines which queue in the total MxN input queues is served during each time slot where M is the number of common buffers. We suppose that each common buffer has K input ports and K output ports, and manages N output queues. The 3DRR scheduler determines MxK queues in every K(M) cycle when $K\geq$M (K$\leq$M), and provides massively parallel processing for the applications of high-speed switches with a large number of ports. The 3-DRR scheduler can be implemented using duplicated simple logic components allowing very high-speed implementation.

  • PDF

Analysis of Statistical Neurodynamics for the Effests of the Hysteretic Property on the Performance of Sequential Associative Neural Nets (히스테리시스 특성이 계열연상에 미치는 영향에 대한 통계 신경역학적 해석)

  • Kim, Eung-Su;O, Chun-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.4
    • /
    • pp.1035-1045
    • /
    • 1997
  • It is important to understand how we can deal with doements for the modeling of neural networks when we are unbestigating the dynamical performance and the information procoessing capabilitids.The information procewssing capabkities of model neural networks will change for different response, synaptic weights or learning rules. Using the staritical neurodyamics method, we evalute the capabikities of neural networks in order to understand the basic conept ofr parallel distributed processing. In this paper, we explain the reuslts of theoretical anaysis of the effests of the hysteretic property on the performance of wuquential associative neral networks.

  • PDF

Design and Analysis of a Class of Fault Tolerant Multistage Interconnection Networks: the Augmented Modified Delta (AMD) Network (AMD 고장감내 다단계 상호 연결망의 설계 및 분석)

  • Kim, Jung-Sun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.9
    • /
    • pp.2259-2268
    • /
    • 1997
  • Multistage interconnection networks(MINs) provide a high-bandwidth communication between processors and/or memory modules in a cost-effective way. In this paper, we propose a class of multipath MINs, called the Augmented Modified Delta(AMD) network, and analyze its performance and reliability. The salient features of the AMD network include fault-tolerant capability, modular structure, and high performance, which are essential for real-time parallel/distributed processing environments. The class of the AMD network retains well-known characteristics of the Kappa network, but it's design procedure is more systematic. Like Delta networks, all the AMD networks are topologically equivalent with each other.

  • PDF

Design of the Digital Neuron Processor (디지털 뉴런프로세서의 설계에 관한 연구)

  • Hong, Bong-Wha;Lee, Ho-Sun;Park, Wha-Se
    • 전자공학회논문지 IE
    • /
    • v.44 no.3
    • /
    • pp.12-22
    • /
    • 2007
  • In this paper, we designed of the high speed digital neuron processor in order to digital neural networks. we designed of the MAC(Multiplier and Accumulator) operation unit used residue number system without carry propagation for the high speed operation. and we implemented sigmoid active function which make it difficult to design neuron processor. The Designed circuits are descripted by VHDL and synthesized by Compass tools. we designed of MAC operation unit and sigmoid processing unit are proved that it could run time 19.6 nsec on the simulation and decreased to hardware size about 50%, each order. Designed digital neuron processor can be implementation in parallel distributed processing system with desired real time processing, In this paper.

Analysis of the effects of the hysteretic property on the performance of sequential associative neural nets (계열연상능력에 미치는 히스테리시스 특성에 대한 해석)

  • Kim, Eung-Soo;Lee, Sang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.448-459
    • /
    • 2012
  • It is important to understand how we can deal with elements for the modeling of neural networks when we are investigating the dynamical performance and the information processing capabilities. The information processing capabilities of model neural networks will change for different response, synaptic weights or learning rules. Using the statistical neurodynamics method, we evaluate the capabilities of neural networks in order to understand the basic concept of parallel distributed processing. In this paper, we explain the results of theoretical analysis of the effects of the hysteretic property on the performance of sequential associative neural networks.

Parallel Pipelined Spatial Join Method for Efficient Query Processing In Distributed Spatial Database Systems (분산 공간 데이터베이스 시스템에서의 효율적인 질의 처리를 위한 병렬 연쇄 공간 죠인 기법)

  • Ko, Ju-Il;Lee, Hwan-Jae;Kim, Myoung-Keun;Lee, Soon-Jo;Bae, Hae-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.11-14
    • /
    • 2002
  • 분산 공간 데이터베이스 시스템에서 자주 수행되는 공간 죠인 질의는 공간 데이터의 특징인 대용량성과 복잡성으로 인하여 공간 연산 수행시 연간을 수행하는 서버의 CPU 및 디스크 I/O상의 과부하를 일으킨다. 본 논문은 이러한 분산 광간 데이터베이스 시스템에서 수행 비용이 많이 드는 원격 사이트간의 공간 죠인 질의를 병렬적이며 연쇄적으로 수행하는 기법을 제안한다. 본 기법은 공간 죠인 연산의 대상이 되는 릴레이션들을 공간 연산의 특성에 따라 순서화하고, 그 중 최하위의 죠인에 참여하는 릴레이션들 중 하나를 이등분 하는 방법으로 공간 죠인 연산을 분리한 추, 질의 수행에 참여하는 두 서버에게 죠인 연산을 분배한다. 각 서버는 분할된 공간 죠인 연산을 동시에 연쇄적으로 저리하고 결과를 병합하여 최종 죠인 결과를 생성한다. 본 기법은 릴레이션을 분할하여 죠인을 수행함으로써 공간 연산에 참여하는 객체의 수를 절반으로 줄이며 R-Tree 등의 공간 인덱스 탐색 횟수와 그 범위를 감소시킨다. 또한 연쇄적인 질의 처리로 죠인의 결과인 임시 릴레이션을 생성하지 않으므로 대용량의 데이터에 대한 복잡한 질의에 대해서도 제한 없이 수행한다.

  • PDF