ks
1
©
M
U
[>
“©
£

Hugg 9

e

3219 gz 2H A=Y

PF - oA
ARUSa - CHFANFAATY

THREE-DIMENSIONAL ROUND-ROBIN SCHEDULER FOR ADVANCED INPUT
QUEUING SWITCHES

Gab Joong Jeong* - Bhum-Cheol Lee**
*Gyeongju University - **ETRI
E-mail : gjjeong@kyongju.ac.kr

2 o

£ =28 14% TF dYuEE JHAE izl 284 HEHS 94 NZE 3AY fes=zw

I ol & =& Agd AAEHE 2 Y WHdA 2 28 78 SPFHe

st BAMY % v E JMAE 29 REgyzedN 1oz FAE 2AE 0T A

M A% Z+ g% 49 BlH7 K9 98 3 28 XES /M4 N A9 73 &

M K<M)d = o KM) Alel& nltk MxK A9 7144 &8 #FE8°] 53 &9

T Qs =AY dF B 2AEY 72E o83 tETFY 29
S 2HA HEgde n4 §48 A I

N

ABSTRACT

This paper presents a new, three-dimensional round-robin scheduler that provides high throughput and fair
access in an advanced input-queued packet switch using shared input buffers. We consider an architecture in
which each input port group shares a common buffer and maintains a separate queue for each output, which
is called the distributed common input buffer switch. In an NxN switch, our scheduler determines which
queue in the total MxN input queues is served during each time slot where M is the number of common
buffers. We suppose that each common buffer has K input ports and K output ports, and manages N output
queues. The 3DRR scheduler determines MxK queues in every K(M) cycle when K=M (K<M), and provides
massively parallel processing for the applications of high-speed switches with a large number of ports. The
3-DRR scheduler can be implemented using duplicated simple logic components allowing very high-speed
implementation.

keyword

distributed common input buffer, parallel round-robin scheduler, switch fabric

| . Introduction There is a popular perception that input-queued

' switches suffer from inherently low performance

There has recently been a merging of ATM due to head of line (HOL) blocking. HOL

switches, LAN switches, and IP routers [1]. The blocking arises when the input buffer is arranged
architectures of high speed switches and IP ;5 g single FIFO queue.

routers are built around a cross-point switch that

is configured to use a centralized scheduler, and

each uses a fixed size cell as a transfer unit.

Rather than maintain a single FIFO queue for
all cells, each input maintains a separate queue
for each output. This scheme is called "virtual

- 373 -

S FAR BN 2003 FAZHEEHRA ATE A%

output queuing" (VOQ) and was first introduced
by Tamir et al. in [2]. HOL blocking is
eliminated because cells only queue behind cells
that are destined to the same output. No cell can
be held up by a cell ahead of it that is destined
to a different output. When VOQs are used, the
possibility of increasing the throughput of an
input-queued switch from 58% to 100% for both
uniform and non-uniform traffic has been
demonstrated [3]. So, cross-point switches that
use VOQs have been employed in a number of
studies. However, several cells in an input
module can be timed to be sent simultaneously
since scheduling is independently executed for
each output. This is called "buffer blocking" and
is a primary factor in throughput saturation. The
optimum architecture for input queuing switches
introduced by Obara in [4],[5] is the sharing of a
common input buffer between several input
ports. This architecture enhances the throughput
of an input-queued switch.

We consider here the input queuing switch
architecture in which several input ports share a
common buffer that employs VOQs. When we
use a cross-point switch, we require a scheduling
algorithm that configures the fabric during each
cell time, and decides which inputs will be
connected to which outputs. In this paper, we
restrict our focus to the efficient and fast
scheduling method of our switch architecture.

II. Advanced Input Queuing Switch Fabric

Let us consider the input queuing switch
architecture shown in Fig. 1, called the dis-
tributed common input buffer switch, where
several input ports share a common queue. Let
K be the group size of the input ports. There is
no change in an input controller which uses
VOQs, a space-division switch, and a contention
control. The input controllers in an input port
group can be replaced with a KxK shared buffer
output-queued switch that manages N output
queues internally. In this architecture, the K cells
are allowed to be sent simultaneously, i.e. all of
the K cells to be set at one time are allowed to
originate from the same input port, and each of
the K cells are destined to different output ports.

In an NxN space-division cross-point switch,
there are M (= N/K) common input buffer
controllers, and a common input buffer can use
K shared communication links simultaneously.
When all of M common input buffers request N
shared communication links, a centralized sch-

eduler has to determine the non-conflict N input
queues among MxN requests during one cell
time. Here, each of the K input queue groups
has to be selected by different output ports, eva-
ding conflicts in an NxN space-division cro-
ss-point switch fabric. In the selection of
non-conflict input and output combination sets,
the centralized scheduler has to consider fair
service for all input queues without any
starvation ports and maximum input and output
combination sets to which to transfer cells of the
input queues simultaneously without buffer blo-
cking. Therefore, there is need of a new sche-
duling algorithm and method for complex sche-
duling that takes into consideration both fairness
and buffer blocking.

Common Input Buffer(0)
Qui th
0
Input(O)—— —Output(0)
Input(K-1)-] Zg ’ i
put(K-1)- K1
; Space-
i | Division
Commpn Input BufferfM-1) { | switch
QOuf th H
Input(N-K)—— N-K, !
Input(N-1)-1 j]]j[]j% L, [-—» Output(N-1)
N-1
N-1
TCcnﬁguration
Centralized Scheduler

Fig. 1. Distributed common input buffer switch.

Ill. Three-Dimensional Round-Robin
Scheduler

The three-dimensional round-robin (3DRR)
scheduling scheme is a variation of a simple
basic 2DRR scheduling scheme. The architecture
of the proposed 3DRR scheduler consists of an
address round rover and two steps of projections
as shown in Fig. 2. The address round rover can
be implemented by wusing simple modulo-N
counters as in the basic 2DRR scheduler. The
concept of 3DRR scheduling is completed
through the two steps of the projection ope-
rations. In the first projection, there are a request
matrix and a parallel arbitration processor. The
first projector considers all the heads of the input
queues, and projects those input queues which
have a request to a virtual screen according to
the proposed rotating operation. In the second
projection, the KxM (= N) input queues are
selected from among all the MxN input queues

- 374 -

Qe 2902 ALY A% 39 enzy 2%

which are projected by the first projection.

T g p —
3 x £ 2 8 3 &
& 8 o 3 3 A =
=S . a
2] B o = o 2
g—»%—»é»né—+ ‘E——bx’—b g
[8 o 8 £ E =)
AR IR
sl 2l |gll|E||5]|]|3
< — ‘o = 2 g
< C el I 3
= 2 B] [
a2 i

‘«— First Projection -—»'4— Second Projection —'

Fig. 2. architecture of parallel scheduler.

In our distributed common input buffer
switch, each common input buffer can use K
multiple output ports simultaneously. To serve
all common input buffers fairly, let us consider
the request matrix for the 3DRR scheduling as
shown in Fig. 3. Let us configure the request
matrix so that all the requests from a common
buffer are placed in one column. Then, the
request matrix is configured by M columns and
N rows. Let us take K copies of the configured
MxN request matrix. After that, let us separate
each MxN request matrix into K atomic request
matrices which are MxM (or MxK) request
matrices. As an atomic request, it can be an MxK
request matrix in the case of the asymmetric
atomic request matrix when MxK = N and M=
K. Hereafter, we will describe an atomic request
as only an MxM request matrix for clear
illustration. All the copied and separated request
matrices can be virtually implemented by using
bus or multiple fan-outs of the original request
data.

CIB(0) Requests

CIB: Cormon lnput Buffer

Fig. 3. The request matrix configuration and the first

projection structure for a 16x16 switch example using
four 4x4 comunon input buffers.

In the first parallel projection, we describe two
types of parallel round-robin scheduling, same
phase round-robin scheduling and different
phase round-robin scheduling. At first, let us
consider same phase parallel round-robin sche-

duling. An MxN request matrix is separated into
the K atomic request matrices above. The K
atomic matrices are scheduled in parallel by the
basic 2DRR scheduling with the same rou-
nd-robin phase. From the same round-robin start
address, the atomic matrices are scheduled
during M cycles. In each scheduling cycle, M
diagonal requests in each of K atomic request
matrices are scheduled during M cycles by M
parallel processors. The M diagonal requests in
an atomic request matrix are independent of
each other for the parallel processing of each
input and output combination set as is usual
with basic 2DRR scheduling. Independent reg-
uests can be selected by simple modulo-N cou-
nter. If any requests among the M diagonal
requests request non-selected input and output
ports, the requested input and output ports are
selected in parallel at the round-robin cycle.
These M parallel selections are performed in K
parallel. Therefore, the input and output port
sets selected by MxK parallel processors are
projected to the K multiple virtual output ports
of the individual common input buffer to which
each set of input and output ports belongs. The
projection location of each set among its K
multiple virtual output ports is determined by
the order of the separated atomic request
matrices. Each selected set of the atomic request
matrices of the first MxN request matrix is
projected to the K multiple virtual output ports
of its common input buffer in ascending order.
Hereafter, we call these atomic schedulers an
MxN parallel round-robin scheduler.

Here, let us take K copies of the previous
MxN parallel round-robin scheduler, which starts
scheduling at the same round-robin start signal,
for the K atomic request matrices of the MxN
request matrix. The K copies of the MxN parallel
round-robin scheduler schedule in parallel their
MxN request matrices in different phase
individually. Every MxN parallel round-robin
scheduler starts scheduling from different rou-
nd-robin start addresses, and their selected input
and output sets are projected to the K multiple
virtual output ports of their common input
buffer after a rotation operation. The K sets of
the scheduling result of the i'th MxN parallel
round-robin scheduler which starts scheduling at
the i'th round-robin cycle, where 0<i<(K-1), are
rotated by i and projected to their K multiple
virtual output ports.

In the second parallel projection, there are two
steps for the parallel selection of N input queues
among MxN input queues that are projected to

- 375 -

ARG RT3 2003 FAFHSEAIA ATH A2z

the virtual output ports by the first projection.
At the first step, we need to select one input
queue which has the highest priority and
maximum cost from among the K input queues
originated from the same common input buffer
at each round-robin cycle. When we find the
highest priority input queue, the selected input
and output ports in previous round-robin cycles
are excluded. K selections in parallel are needed
for one common input buffer since one common
input buffer has K physical output ports. An
input and output set for a physical output port
of a common input buffer cannot be selected
more than once in the same common input
buffer at the same time slot, since every physical
port of K considers different request sets each
other at every round-robin cycle.

At the second step, a conditional round-robin
selector determines the final results of the
selected input and output ports to which to
transfer the queued input cells in all common
input buffers by using the N shared output ports
of M common input buffers. It grants K input
queues which do not conflict with the output
ports of the other common input buffers, among
N input queues in a common input buffer at the
same time slot. N conditional round-robin
selectors determine N input queues at one time
slot in parallel. If there is an input queue
projected to two or more output ports in mu-
Itiple, the conditional round-robin selector selects
only one input queue of a common input buffer
which has the highest priority in the round-robin
cycle. Every conditional selector uses the same
round-robin sequence for the K sets of the input
and output ports. At each round-robin cycle,
multiple projections can occur only in M output
ports of the space-division cross-point switch
fabric, i.e. every one port among M common
input buffers. The output port locations in which
the same set can be projected more than once at
each round-robin c¢ycle are fixed. So, the
conditional ~ round-robin selector can be
implemented by simple logic gates because it is
an M to 1 selector, not an N to 1 selector. The
simple selector can support high-speed ope-
rations.

V. Conclusion

We have proposed a new 3DRR scheduler for
an advanced input queuing switch fabric which
can be applied to both the high-speed ATM
switch and the IP router. It takes into consi-

deration complex parallel scheduling to eliminate
buffer blocking effect that degrades the
throughput of an input-queued switch. Our
approach can be easily implemented in a single
ASIC chip to control all of the distributed
common input buffers and to configure the
space-division cross-point switch. If the number
of internal queues in a common input buffer is
three times larger than the number of output
ports, the performance of the advanced input
queuing switch is comparable to the performance
of an output queuing switch. Switch throughput
reaches above 90% of an output queuing switch.

References

[1] G. Parulkar, D. Schmidt, and J. Turner,
"AITPM: A Strategy for Integrating IP with
ATM," in Proc. INFOCOM '96, March 1996.

[21 Y. Tamir and G. Frazier, "High perfo-
rmance multi-queue buffers for VLSI
communication switches," in Proc. 15th

Ann. Symp. on Comp. Arch., pp.343-354,
June 1988.

[3] N. McKeown, V. Anantharam, and J.
Walrand, "Achieving 100% Throughput in
an Input-Queued Switch," in Proc. INF-
OCOM 96, March 1996.

[4] H. Obara, "Optimum architecture for input
queuing ATM switches," IEE Electronic
Letters, pp. 555-557, March 1991.

[5] H. Kondoh, H. Notani, H. Yamanaka, K.
Higashitani, H. Saito, I. Hayashi, S.
Kohama, Y. Matsuda, K. Oshima, and M.
Nakaya, "A 622-Mb/s 8x8 ATM Switch
Chip Set with Shared Multibuffer
Architecture," IEEE J. Solid-State Circuits,
vol. 28, no. 7, pp. 808-815, July 1993.

- 376 -

