• Title/Summary/Keyword: Parallel System Hypercube

Search Result 14, Processing Time 0.018 seconds

Design and Implementation of the DEVS-based Distributed Simulation Environment: D-DEVSim++ (DEVS에 기반한 분산 시뮬레이션 환경 $D-DEVSim^{++}$의 설계 및 구현)

  • 김기형
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.2
    • /
    • pp.41-58
    • /
    • 1996
  • The Discrete Event Systems Specification(DEVS) formalism specifies a discrete event system in a hierarchical, modular form. This paper presents a distributed simulation environment D-DEVSim++ for models specified by the DEVS formalism. D-DEVSim++ employs a new simulation scheme which is a hybrid algorithm of the hierarchical simulation and Time Warp mechanisms. The scheme can utilize both the hierarchical scheduling parallelism and the inherent parallelism of DEVS models. This hierarchical scheduling parallelism is investigated through analysis. Performance of the proposed methodology is evaluated through benchmark simulation on a 5-dimensional hypercube parallel machine. The performance results indicate that the methodology can achieve significant speedup. Also, it is shown that the analyzed speedup for the hierarchical scheduling time corresponds the experiment.

  • PDF

Embedding Multiple Meshes into a Crossed Cube (다중 메쉬의 교차큐브에 대한 임베딩)

  • Kim, Sook-Yeon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.5
    • /
    • pp.335-343
    • /
    • 2009
  • The crossed cube has received great attention because it has equal or superior properties compared to the hypercube that is widely known as a versatile parallel processing system. It has been known that disjoint two copies of a mesh of size $4{\times}2^m$ or disjoint four copies of a mesh of size $8{\times}2^m$ can be embedded into a crossed cube with dilation 1 and expansion 1 [Dong, Yang, Zhao, and Tang, 2008]. However, it is not known that disjoint multiple copies of a mesh with more than eight rows and columns can be embedded into a crossed cube with dilation 1 and expansion 1. In this paper, we show that disjoint $2^{n-1}$ copies of a mesh of size $2^n{\times}2^m$ can be embedded into a crossed cube with dilation 1 and expansion 1 where $n{\geq}1$ and $m{\geq}3$. Our result is optimal in terms of dilation and expansion that are important measures of graph embedding. In addition, our result is practically usable in allocating multiple jobs of mesh structure on a parallel computer of crossed cube structure.

All-port Broadcasting Algorithms on Wormhole Routed Star Graph Networks (웜홀 라우팅을 지원하는 스타그래프 네트워크에서 전 포트 브로드캐스팅 알고리즘)

  • Kim, Cha-Young;Lee, Sang-Kyu;Lee, Ju-Young
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.2
    • /
    • pp.65-74
    • /
    • 2002
  • Recently star networks are considered as attractive alternatives to the widely used hypercube for interconnection networks in parallel processing systems by many researchers. One of the fundamental communication problems on star graph networks is broadcasing In this paper we consider the broadcasting problems in star graph networks using wormhole routing. In wormhole routed system minimizing link contention is more critical for the system performance than the distance between two communicating nodes. We use Hamiltonian paths in star graph to set up link-disjoint communication paths We present a broadcast algorithm in n-dimensional star graph of N(=n!) nodes such that the total completion time is no larger than $([long_n n!]+1)$ steps where $([long_n n!]+1)$ is the lower bound This result is significant improvement over the previous n-1 step broadcasting algorithm.

Embedding a Mesh into a Crossed Cube (메쉬의 교차큐브에 대한 임베딩)

  • Kim, Sook-Yeon
    • The KIPS Transactions:PartA
    • /
    • v.15A no.6
    • /
    • pp.301-308
    • /
    • 2008
  • The crossed cube has received great attention because it has equal or superior properties to the hypercube that is widely known as a versatile parallel processing system. It has been known that a mesh of size $2{\times}2^m$ can be embedded into a crossed cube with dilation 1 and expansion 1 and a mesh of size $4{\times}2^m$ with dilation 1 and expansion 2. However, as we know, it has been a conjecture that a mesh with more than eight rows and columns can be embedded into a crossed cube with dilation 1. In this paper, we show that a mesh of size $2^n{\times}2^m$ can be embedded into a crossed cube with dilation 1 and expansion $2^{n-1}$ where $n{\geq}1$ and $m{\geq}3$.